DOI QR코드

DOI QR Code

Simulation of the Forming Process of the Shielded Slot Plate for the Molten Carbonate Fuel Cell Using a Ductile Fracture Criterion

연성파괴조건을 사용한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 성형 공정 유한요소 해석

  • 이창환 (한국과학기술원 기계공학과) ;
  • 양동열 (한국과학기술원 기계공학과) ;
  • 이승륜 (두산중공업 기술연구원 연료전지개발센터) ;
  • 강동우 (두산중공업 기술연구원 연료전지개발센터) ;
  • 장인갑 (두산중공업 기술연구원 연료전지개발센터) ;
  • 이태원 (두산중공업 기술연구원 연료전지개발센터)
  • Received : 2012.05.17
  • Accepted : 2012.07.10
  • Published : 2012.08.01

Abstract

The shielded slot plates for a molten carbonate fuel cell(MCFC) have a sheared corrugated trapezoidal pattern. In the FEM simulations for the production of the shielded slot plate, the user material subroutine VUMAT in the commercial FEM software ABAQUS was used to implement a ductile fracture criterion. The critical damage value for the ductile fracture criterion was determined by comparing the experimental results of the shearing process with the simulation results. Using the ductile fracture criterion, the FEM simulation of the three-dimensional forming process of the shielded slot plate was conducted. The effects of the shearing process on the forming process were examined through FEM simulation and experiments. The forming simulation of nine unit cells was conducted. Using the simulation results of the forming process, the deformed shape after springback was calculated. The experimental result shows good agreement with the simulation.

Keywords

References

  1. R. O'Hyare, S. W. Cha, W. Collela, F. B. Prinz, 2006, Fuel Cells - Fundamentals, John Wiley & Sons, New York, pp. 242-246.
  2. X. Li, 2005, Principles of Fuel Cells, Taylor & Francis, Group, New York, pp. 439-443.
  3. T. Shinoki, M. Matsumura, A. Sasaki, 1995, Development of an Internal Reforming Molten Carbonate Fuel Cell Stack, IEEE Trans. Energy Convers., Vol. 10, No. 4, pp. 722-729. https://doi.org/10.1109/60.475845
  4. C. Yuh, J. Colpetzer, K. Dickson, M. Farooque, G. Xu, 2006, Carbonate Fuel Cell Materials, J. Mater. Eng. Perform., Vol. 15, No. 4, pp. 457-462. https://doi.org/10.1361/105994906X117305
  5. E. Taupin, J. Breitling, W. T. Wu, T. Altan, 1996, Material Fracture and Burr Formation in Blanking Results of FEM Simulations and Comparison with Experiments, J. Mater. Process. Technol., Vol. 59, No. 1, pp. 68-78. https://doi.org/10.1016/0924-0136(96)02288-1
  6. S. Ghosh, M. Li, An. Khadke, 2008, 3D Modeling of Shear-slitting Process for Aluminum Alloys, J. of Mater. Process Technol., Vol. 167, No. 1, pp. 91-102.
  7. C. W. Lee, D. Y. Yang , S. R. Lee, I. G. Chang, T. W. Lee, 2011, Proc. NUMISHEET2011, Kor. Soc. Tech. Plast., Seoul, Korea, pp. 911-918.
  8. M. G. Cockcroft, D. J. Latham, 1968, Ductility and Workability of Metals, J. of the Institute of Metals, Vol. 96, pp. 33-39.
  9. M. Oyane, T. Sato, K. Okimoto, S. Shima, 1980, Criteria for Ductile Fracture and Their Applications, J. of Mech. Work. Technol., Vol. 4, No. 1, pp. 65-81. https://doi.org/10.1016/0378-3804(80)90006-6
  10. V. Tvergaard, 1989, Material Failure by Void Growth to Coalescence, Adv. Appl. Mech., Vol. 27, pp. 83-147. https://doi.org/10.1016/S0065-2156(08)70195-9
  11. Y. K. Ko, J. S. Lee, H. Huh, H. K. Kim, S. H. Park, 2005, Prediction of Fracture in Hub-hole Expansion Process Using Ductile Fracture Criteria, Trans. Mater. Process., Vol. 14, No. 7, pp. 601-606. https://doi.org/10.5228/KSPP.2005.14.7.601
  12. ABAQUS Version 6.9, User's Manual, Dassault Systemes, 2009, Providence RI.