DOI QR코드

DOI QR Code

접착제로 접합된 DCB 시험편의 피로 해석에 관한 연구

Study on Fatigue Analysis of DCB Specimen Bonded

  • 최해규 (공주대학교 대학원 기계공학과) ;
  • 홍순직 (공주대학교 신소재공학부) ;
  • 김세환 (공주대학교 기계자동차공학부) ;
  • 조재웅 (공주대학교 기계자동차공학부)
  • Choi, Hae-Kyu (Division of Mechanical Engineering, Graduate School, Kongju University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju University) ;
  • Kim, Sei-Hwan (Division of Mechanical & Automotive Engineering, Kongju University) ;
  • Cho, Jae-Ung (Division of Mechanical & Automotive Engineering, Kongju University)
  • 투고 : 2012.04.25
  • 심사 : 2012.07.12
  • 발행 : 2012.07.31

초록

본 논문에서는 접착제로 접합된 DCB(이중외팔보) 시험편의 피로 해석을 수행하였다. 두께가 25 mm 및 40 mm인 두 모델들의 피로수명과 피로손상의 해석 결과를 비교해보면, 두께 25 mm인 모델이 두께 40 mm인 모델에 비하여 수명과 손상이 불리한 것으로 나타났으며 불규칙 피로하중에서는 'SAE transmission'에서 가장 불리한 값을 나타냈다. Rainflow matrices에서는 'SAE bracket history'에서 가장 취약한 것으로 나타났다. Damage matrices에서는 상대적으로 두께 25 mm인 모델이 불리한 모습을 보였지만, 상대적인 손상 가능성에서는 두께 40 mm인 모델이 더 높은 것으로 나타났다. 또한 'SAE transmission'에서 가장 안정한 경향을 보이고 있고 상대적인 손상으로서 약 1.1 에서 1.8% 정도로 가장 작은 것으로 나타났다. 본 연구에서 얻어진 해석 결과를 접착제로 접합된 실제 복합재 구조물에 적용시켜 파괴거동을 분석하고 그 기계적인 특성을 파악할 수 있다.

In this study, the fracture behaviour of DCB(double cantilever beam) specimen with aluminum foam composite materials is analyzed by simulation. By comparing the analysis results with two models of 25 mm and 40 mm, the model with thickness of 25 mm is weaker than 40 mm at fatigue life and damage. Two models are unfavorable at 'SAE Transmission' in case of nonuniform fatigue load and rainflow matrices are weakest at 'SAE Bracket history'. In damage matrices, the model with 25 mm of thickness is weaker than the model with 40 mm of thickness but the model with 40 mm of thickness relative damage possibility is higher than in case of 25 mm. As two models are safest at 'SAE Transmission', the relative damage becomes the lowest value from 1.1 to 1.8 %. The mechanical property can be investigated by applying these analyses results with the real composite structure bonded with adhesive and analyzing fracture behaviour.

키워드

참고문헌

  1. S. O. Park, Z. K. Rhee, "Analysis for strength estimation of adhesive joints", Symposium on Emerging Technologies in Manufacturing System Engineering, pp. 98-107, 2004.
  2. S. O. Bang, J. H. Kook, S. H. Kim, J. U. Cho, "Simulation Analysis on the Compression property of Sandwich Composite", Journal of the Korea Academia-Industrial cooperation society, Vol. 13, No. 2, pp. 778-484, 2012.
  3. Blackman, B.R.K., Dear, J.P., Kinloch, A.J., MacGillivray, H., Wang, Y., Williams, J.G. and Yayla, P.,S. R. Ahuja, et al., "The Failure of Fibre Composites and Adhesively Bonded Fibre Composites under High Rates of Test Part III Mixed-mode I/II and Mode II Loadings", Journal of Materials Science, Vol. 31, No. 17, pp. 4467-4477, 1996. https://doi.org/10.1007/BF00366342
  4. H. K. Choi, S. H. Kim, J. U. Cho, "Study on Structural Analysis of DCB Specimen Bonded with Aluminum Foam Composite", Journal of the Korea Academia-Industrial cooperation society, Vol. 13, No. 4, pp. 1488-1495, 2012. https://doi.org/10.5762/KAIS.2012.13.4.1488
  5. International Standards Organization, ISO 11343, Geneva(Switzerland), 1993.
  6. British Standard, BS 7991, "Determination of the Mode I Adhesive Fracture Energy GIC of Structure Adhesives Using the Double Cantilever Beam (DBC) and Tapered Double Cantilver Beam (TDCB) Specimens", Imperial college of science and technology (JISC), pp. 3-13, 2001.
  7. Swanson, J., Ansys 12.0, Ansys Inc, U.S.A, 2009.

피인용 문헌

  1. A Fracture Study on the Bonded DCB Specimen of the Mode III Type with Aluminum Foam vol.28, pp.4, 2015, https://doi.org/10.7234/composres.2015.28.4.191