DOI QR코드

DOI QR Code

Crosstalk 감소 효과를 갖는 주기적인 요철 모양의 전송 선로 설계

Periodically Corrugated Transmission Line Design for Crosstalk Reduction

  • 오장택 (아주대학교 전자공학부) ;
  • 박익모 (아주대학교 전자공학부)
  • Oh, Jang-Teak (School of Electrical and Computer Engineering, Ajou University) ;
  • Park, Ik-Mo (School of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2012.01.25
  • 심사 : 2012.06.26
  • 발행 : 2012.07.31

초록

본 논문에서는 주기적인 요철 모양의 구조를 이용하여 인접해 있는 선로 간의 누화(crosstalk) 감소 효과를 갖는 전송 선로를 제안한다. 요철 모양의 전송 선로는 인접한 선로 간의 유도성 커플링과 용량성 커플링의 크기를 동일하게 조절이 가능하다. 따라서 유도성과 용량성의 커플링이 서로 상쇄되기 때문에 누화 감소 효과를 갖는다. 요철 모양의 전송 선로는 비유전율이 3.38이며, 두께가 0.508 mm인 RO4003 기판 위에 설계하였다. 전산모의 실험 결과, 일반적인 전송 선로와 주기 간격이 A=1 mm인 요철 모양 전송 선로의 far-end 누화는 30 GHz까지 각각 최대 -3.6 dB와 -22 dB 값을 가진다. 측정 결과, 일반적인 전송 선로와 A=1 mm인 요철 모양 전송 선로의 far-end 누화는 30 GHz까지 각각 최대 -6.3 dB와 -20.5 dB 값을 가진다.

In this paper, a periodically corrugated transmission line is proposed. The proposed transmission line can reduce crosstalk between transmission lines. The corrugated transmission line can adjust the amount of inductive coupling and capacitive coupling equally. Thus, the crosstalk is effectively reduced because the inductive coupling and capacitive coupling cancel each other. The corrugated transmission line is fabricated on RO4003 substrate with a dielectric constant of 3.38 and a thickness of 0.508 mm. The simulated far-end crosstalks of conventional transmission line and corrugated transmission line with a period of A=1 mm have maximum values of -3.6 dB and -22 dB, respectively, up to 30 GHz. Measurement results showed that far-end crosstalks of the conventional and corrugated transmission line have maximum values of -6.3 dB and -20.5 dB, respectively, up to 30 GHz.

키워드

참고문헌

  1. J. Chilo, T. Arnaud, "Coupling effects in the time domain for an interconnecting bus in high-speed GaAs logic circuits", IEEE Trans. Electron Devices, vol. 32, no. 3, pp. 347-352, Mar. 1984.
  2. H. You, M. Soma, "Crosstalk analysis of interconnection lines and packages in high-speed integrated circuits", IEEE Trans. Circuits Syst., vol. 37, no. 8, pp. 1019-1026, Aug. 1990. https://doi.org/10.1109/31.56075
  3. I. Novak, B. Eged, and L. Hatvani, "Measurement and simulation of crosstalk reduction by discrete discontinuities along coupled PCB traces", IEEE Trans. Instru. and Meas., vol. 43, no. 2, pp. 170-175, Aug. 1994. https://doi.org/10.1109/19.293415
  4. T. R. Gazizov, "Far-end crosstalk reduction in double layered dielectic interconnects", IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 566-572, Nov. 2001. https://doi.org/10.1109/15.974636
  5. F. D. Mbair, W. P. Siebert, and H. Hesselbom, "High- frequency transmission lines crosstalk reduction using spacing rules", IEEE Trans. Adv. Packag., vol. 31, no. 3, pp. 601-610, Sep. 2008. https://doi.org/10.1109/TCAPT.2008.2001163
  6. R. Sharam, T. Chakravarty, and A. B. Bhattacharyya, "Transient analysis of microstrip-like interconnections guarded by ground tracks", Progress in Electromagnetics Research, vol. PIERS-82, pp. 189- 202, 2008.
  7. W. -T. Huang, C. -H. Lu, and D. -B. Lin, "The optimal number and location of grounded vias to reduce crosstalk", Progress in Electromagnetics Research, vol. 95, pp. 241-266, 2009. https://doi.org/10.2528/PIER09071709
  8. K. H. Lee, H. B. Lee, H. K. Jung, J. Y. Sim, and H. J. Park, "A serpentine guard trace to reduce the far-end crosstalk voltage and the crosstalk induced timing jitter of parallel microstip lines", IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 809-817, Nov. 2008. https://doi.org/10.1109/TADVP.2008.924226
  9. W. -T. Huang, C. -H. Lu, and D. -B. Lin, "Suppression of crosstalk using serpentine guard trace vias", Progress in Electromagnetics Research, vol. 109, pp. 37-61, 2010. https://doi.org/10.2528/PIER10090504
  10. S. K. Koo, H. S. Lee, and Y. B. Park, "Crosstalk reduction effect of asymmetric stub loaded lines", J. of Electromagn. Waves Appl., vol. 25, pp. 1156- 1167, May 2011. https://doi.org/10.1163/156939311795762204
  11. A. R. Mallahzadeh, A. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, "Crosstalk reduction using step shaped transmission line", Progress in Electromagnetics Research C, vol. 12, pp. 139- 148, 2010. https://doi.org/10.2528/PIERC09121606
  12. F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap(UC-PBG) structure and its application for microwave circuits", IEEE Trans Microwave Theory Tech., vol. 47, no. 8, pp. 1509-1514, Aug. 1999. https://doi.org/10.1109/22.780402
  13. D. Nesic, "A new type for slow-wave 1-D PBG microstrip structure without etching in the ground plane for filter and other applications", Microwave Opt. Technol. Lett., vol. 33, no. 6, pp. 440-442, Jun. 2002. https://doi.org/10.1002/mop.10345
  14. H. Kim, B. Lee, "Bandgap and slow/fast-wave characteristics of defected ground structures(DGSs) including left-handed features", IEEE Trans Microwave Theory Tech., vol. 54, no. 7, pp. 3113- 3120, Jul. 2006. https://doi.org/10.1109/TMTT.2006.877060

피인용 문헌

  1. Near end crosstalk reduction using slow wave structures vol.30, pp.12, 2016, https://doi.org/10.1080/09205071.2016.1205524