DOI QR코드

DOI QR Code

AZO 투명전극의 결정성과 광학적 특성

Crystallization and Optical Properties of Transparent AZO Thin Films

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • 투고 : 2012.06.06
  • 심사 : 2012.07.25
  • 발행 : 2012.07.30

초록

RF 마그네트론 스퍼터에 의해 만들어진 AZO 박막을 기판의 화학적 특성에 따른 광학적 특성에 대하여 조사하였다. 기판은ICP-CVD방법으로 제작된 SiOC 박막으로 화학적 특성의 변화를 관찰하기 위해서 산소와 아르곤(DMDMOS)가스의 유량비를 다르게 하여 증착하였다. 아르곤의 유량이 증가할수록 Si-O 결합이 증가하였으며, 비정질구조가 증가되었다. 비정질도가 높은 SiOC 박막 위에 성장된 AZO 박막의 거칠기는 감소하였으며, 표면의 평탄도가 개선되었다. 더불어 비정질도가 높은 SiOC박막 위에 성장된 AZO 박막에서 자외선 영역의 방사 강도가 제일 높았다.

The optical properties of AZO thin films prepared by the RF mangnetron sputtering system was studied to research the dependance of chemical properties of substrate. The substrate was the SiOC film deposited by Inductively coupled plasma chemical vapor deposition with various gas flow rate of $O_2$ and Ar (DMDMOS). In accordance with the increase of Ar gas flow rates, the Si-O bond in the SiOC film increased and then progressed the amorphism. The roughness of AZO grown on SiOC film with high degree of amorphism decreased and then improved the flatness of surfaces. Moreover, the ultra violet emission with high intensity was spontaneously induced in the AZO film growed on SiOC film with high degree of amorphism.

키워드

참고문헌

  1. M. S. Kim, K. G. Yim, G. Y. Leem, S. R. Kim, G. W. Nam, D. Y. Lee, J. S. Kim, and J. S. Kim, J. Korean Phys. Soc. 59, 2354 (2011). https://doi.org/10.3938/jkps.59.2354
  2. T. E. Park, D. C. Kim, B. H. Kong, and H. K. Cho, J. Korean Phys. Soc. 45, S697 (2004).
  3. J. Heo, H. J. Kim, J. H. Han, and J. W. Shon, Thin Solid Films 515, 5035 (2007). https://doi.org/10.1016/j.tsf.2006.10.095
  4. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. Kumar Mohanta, and H. K. Cho, Appl. Phys. Lett. 105, 013502 (2009).
  5. Y. Kanemitsu, T. Futagi, T. Matsumoto, and H. Mimura, Phys. Rev. B. 49, 14732 (1994). https://doi.org/10.1103/PhysRevB.49.14732
  6. M. K. Mazumder, R. Moriyama, D. Watanabe, C. Kimura, H. Aoki, and T. Sugino, Jpn. J. Appl. Phys. 46, 2006 (2007).
  7. H. Hosono, J. Noncrystralline Solids 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  8. Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, Nanotechnology 17, 174 (2006). https://doi.org/10.1088/0957-4484/17/1/028
  9. A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003). https://doi.org/10.1063/1.1618358
  10. P. F. Carcia, R. S. McLean, M. H. Reilly, M. K. Crawford, E. N. Blanchard, A. Z. Kattamis, and S. Wagner, J. Appl. Phys. 102, 074512 (2007). https://doi.org/10.1063/1.2786869
  11. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett. 93, 93 (2008).
  12. S. Fernandez, A. Martinez-Steele, J. J. Gandia, and F. B. Naranjo, Thin Solid Films 517, 3152 (2009). https://doi.org/10.1016/j.tsf.2008.11.097
  13. T. Oh and C. H. Kim, IEEE Trans. Plasma Science 38, 1598 (2010). https://doi.org/10.1109/TPS.2010.2049665
  14. T. Oh and C. H. Kim, IEEE Trans. Plasma Science 38, 1598 (2010). https://doi.org/10.1109/TPS.2010.2049665