DOI QR코드

DOI QR Code

A Study on the Performance Prediction of Fire Extinguish System in Aircraft Engine Bay

항공기 엔진베이 내 소화장치 성능예측을 위한 연구

  • 박영하 (경상대 항공특성화 대학원, KAI) ;
  • 김형식 (경상대 항공특성화 대학원, KAI) ;
  • 김진환 (한국항공우주연구원, 터보펌프개발그룹) ;
  • 조수용 (경상대 항공기부품기술연구센터)
  • Received : 2012.04.06
  • Accepted : 2012.07.23
  • Published : 2012.08.01

Abstract

Fuel or oil which is leaked into the aircraft engine bay can make a fire when it is contacted to the engine surface of hot temperature. In order to avoid fire, the fire extinguish system should be designed so that the extinguishing agent is quickly injected and its concentration keeps higher in the fire protection region. FAA requires that the extinguishing agent injected within the fire protection region should be sustained longer than 0.5 second on keeping a higher concentration than 6%. For developing a fire protection system satisfying the FAA regulation, numerical and experimental studies for the injection time and the concentration of the extinguishing agent were conducted. These results showed similar trend for the injection time or concentration, but the data acquisition was delayed due to the response of the sensors in the experiment.

항공기 엔진베이에 누유된 연료나 오일이 고온의 엔진 표면에 닿게 되면 점화되어 화재를 야기시킬 위험성이 높다. 이를 방지하기 위하여서는 소화제를 화재방지영역에 신속하게 분사하고 소화제의 농도가 높이 유지되도록 화재방지시스템을 설계하여야 한다. FAA에서는 소화제가 화재방지영역 전체에 6%의 농도를 0.5초 이상 유지하는 것으로 규정하고 있다. 이러한 요구를 만족할 수 있는 화재감지시스템의 개발을 위하여, 본 연구에서는 엔진베이에 소화제의 분사와 농도측정에 대한 수치적인 연구와 실험적인 연구를 수행하였다. 분사된 소화제의 분사시간이나 농도유지에 대하여 실험과 수치적인 연구의 결과는 유사한 경향을 보이나, 실험에서 센서의 응답성으로 인하여 소화제의 농도가 늦게 측정되었다.

Keywords

References

  1. Boeing, "Statistical Summary of Commercial Jet Airplane Accidents, Worldwide Operations 1959-2004," Boeing Commercial Airplane Aviation Safety, May, 2005.
  2. Picard, B., Hartsig, D. and Levesque, R., "F/A-18 Engine Bay Fire Reduction," Technical Memorandum TM-92-172-SA, Naval Air Warfare Center Aircraft Division, Patuxent River, Maryland, 1993.
  3. Altman, R. L., Ling, A. C., Mayer, L. A. and Myronuk, D. J., "Development and Testing of Dry Chemicals in Advanced Extinguishing Systems for Jet Engine Nacelle Fires," NASA Report JTCG/AS-82-T-002, NASA-AMES Research Center, Mountain View, CA. 1983.
  4. Air, "Aircraft Fire Protection for Helicopter Gas Turbine Power Plant and Related System Installations," AIR 1262(8), 1974.
  5. Naval Air, "Fixed-Wing Aircraft Fire Protection: Halon 1301 Fire Suppression Systems Effectivity Analysis," NEWCADLKE-MISC-05SR-0146, Naval Air Warfare Center Aircraft Division, September 1994.
  6. Naval Air, "Rotary Aircraft Fire Protection: Halon 1301 Fire Suppression Systems Effectivity Analysis," NEWCAD LKE-MISC-05-SR-0132, Naval Air Warfare Center Aircraft Division, May 1994.
  7. Tedeschi, M. and Leach, W., "Halon 1301 Fire Suppression System Effectivity Aboard U.S. Naval Aircraft," Halon Options Technical Working Conference, Albuquerque, NM. 1995. pp.128-136.
  8. Donald B., "A Review of the History of Fire Suppression on U.S. DoD Aircraft," Halon Options Technical Working Conferences (HOTWC), 2005.
  9. Johnson, A. M. and Grenich, A. F., "Vulnerability Methodology and Protective Measures for Aircraft Fire and Explosion Protection," Wright Patterson AFB, OH, Technical Report AFWAL-TR-85-2060, 1986.
  10. FAA, "General Guidelines for Measuring Fire-Extinguishing Agent Concentration in Powerplant Compartments," FAA Advisory Circular AC No. 20-100, 1977
  11. MIL-E-22285, "Extinguishing System, Fire, Aircraft, High-Rate-Discharge Type, Installation And Test Of Para 3.9 Duration of Discharge,"
  12. MIL-E-22285, "Extinguishing System, Fire, Aircraft, High-Rate-Discharge Type, Installation And Test Of Para 3.8.1 Quantity of agent, (b) For Rough Nacelle Interior with High Airflow,"
  13. MIL-E-22285, "Extinguishing System, Fire, Aircraft, High-Rate-Discharge Type, Installation And Test Of Para 3.8 Concentration of Agent,"
  14. Flowmaster, "Advanced Thermo- Fluid System Modeling and Simulation," Flowmater V7, Flowmaster Group, 2010.
  15. CFX, ANSYS V13, Ansys Inc., 2010.