DOI QR코드

DOI QR Code

Biomorphic C/SiC 복합재료의 기계적 물성 연구

Prediction of Mechanical Property of Biomorphic Composites

  • 정재연 (충북대학교 대학원 토목시스템공학과) ;
  • 우경식 (충북대학교 토목공학부) ;
  • 이동주 (한국과학기술원 신소재공학과) ;
  • 홍순형 (한국과학기술원 신소재공학과) ;
  • 김연철 (국방과학연구소)
  • 투고 : 2012.06.05
  • 심사 : 2012.07.24
  • 발행 : 2012.08.01

초록

본 논문에서는 Biomorphic C/SiC 복합재료에 대하여 단위구조해석을 수행하였다. 소나무와 뉴송을 탄화하고 실리콘을 함침해 제조한 복합재료의 미세조직을 사각배열과 육각배열로 가정해 단위구조를 정의하고 등가물성치를 계산하였다. 단위구조의 크기가 동일하지 않은 경우도 고려하였고, 또한 공극의 배열에 따른 물성치의 변화를 몬테카를로 시뮬레이션을 통해 조사하였다.

In this paper, mechanical property of biomorphic C/SiC composite was calculated by unit cell analysis. The microstructural arrangements of carbonized pine and radiata pine which were impregnated with silicon, were idealized as square and hexagonal arrays. Unit cell was then defined and equivalent elastic constants were calculated. A single and double unit cell structures were considered. The effect of void distribution was also studied by monte carlo simulation.

키워드

참고문헌

  1. Hermann, H., "Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials", Aerospace Science and Technology, Vol. 7, 2003, pp. 551-559. https://doi.org/10.1016/S1270-9638(03)00054-3
  2. Park, H. S., Jang, J. J., Lee, K. H., Lim, K. H., Park, S. B., Kim, Y. C., and Hong, S. H., "Effects of microstructure on flexural strength of biomorphic C/SiC composites", International Journal of Fracture, Vol. 151, 2008, pp. 233-245. https://doi.org/10.1007/s10704-008-9259-6
  3. Lee, Dong J., Jang, Jong J., Park, H. S., Kim, Y. C., Lim, K. H., Park, S. B. and Hong, S. H., "Fabrication of biomorphic SiC composites using wood preforms with different structures", Ceramics International, Vol. 38, 2012, pp. 3089-3095. https://doi.org/10.1016/j.ceramint.2011.12.008
  4. Vereda Alonso, E., García de Torres, A., Siles Cordero, M. T. and Cano Pavón, J. M., "Multivariate optimization of the synthesis and of the microwave dissolution of biomorphic silicon carbide ceramics", Microchemical Journal, Vol. 97, 2011, pp. 101-108. https://doi.org/10.1016/j.microc.2010.07.012
  5. Cano Pavón, J. M., Vereda Alonso, E., Siles Cordero, M. T., García de Torres, A. and Lopez-Cepero, J. M., "Use of spectroscopic techniques for the chemical analysis of biomorphic ilicon carbide ceramics", Analytica Chimica Acta, Vol. 528, 2005, pp. 129-134. https://doi.org/10.1016/j.aca.2004.09.090
  6. Gordic, M. V., Babic, B. M., Stasic, J. M., Trtica, M. S., Volkow Husovic, T., Posarac, M. B. and Matovic, B. Z., "Mechanical properties of biomorphic silicon carbide ceramics", Science of Sintering, Vol. 43, 2011, pp. 215-223. https://doi.org/10.2298/SOS1102215G
  7. Presas, M., Pastor, J. Y., LLorca, J., Arellano-Lopez, A. R., Martinez-Fernandez, J. and Sepulveda, R. E., "Mechanical behavior of biomorphic Si/SiC porous composites", Scripta Materialia, Vol. 53, pp. 1175-1180.
  8. Greil ,P., Lifka, T. and Kaindl, A., "Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure", Journal of the European Ceramic Society, vol. 18, 1998, pp. 1961.1973. https://doi.org/10.1016/S0955-2219(98)00156-3
  9. Greil ,P., Lifka, T. and Kaindl, A., "Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties", Journal of the European Ceramic Society, vol. 18, 1998, pp. 1975-1983. https://doi.org/10.1016/S0955-2219(98)00155-1
  10. Hoppe, R. H. W., Petrova, S. I., "Optimal shape design in biomimetics based on homogenization and adaptivity", Mathematics and Computers in Simulation, Vol. 65, 2004, pp. 257-272. https://doi.org/10.1016/j.matcom.2004.01.002
  11. Hoppe, R. H. W., Petrova, S. I., "Optimal structural design of biomorphic composite materials", Lecture Notes in Computer Science, 2003, pp. 479-487.
  12. Hoppe, R. H. W., Petrova, S. I., "Elasto-platicity model in strucural optimization of composite materials with periodic microstructures", Mathematics and Computers in Simulation, Vol. 74, 2007, pp. 468-480. https://doi.org/10.1016/j.matcom.2006.07.002
  13. Bordas, S., Hoppe, R. H. W. and Petrova, S. I., "Mechanical failute in microstructural heterogeneous materials", Lecture Notes in Computer Science, 2007, pp. 533-541.
  14. Hoppe, R. H. W., Petrova, S. I. and Vassilevski, Y. V., "Adaptive grid refinement for computation of the homogenized elasticity tensor", Lecture Notes in Computer Science, 2004, pp. 371-378.
  15. 김성준, 한수연, 신의섭, "미시역학적 유한 요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출", 한국복합재료학회지 25권 1호, 2012, pp. 1-8.
  16. Klann, S. C., "Unit cell analysis of composite microstructures", Master Thesis, Michigan State University, 2008.
  17. Whitcomb, J. D., "Three-dimensional stress analysis of plain weave composites", NASA TM 101672, 1989.
  18. Gibson, R. F., "Principles of composite material mechanics", McGraw-Hill, 1994.