참고문헌
- Beguin, P. and Aubert, J. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
- Cai, S., Li, J., Hu, F., Zhang, K., Luo, Y., Janto, B., Boissy, R., Ehrlich, G. and Dong, Y. 2010. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol. 76, 3818-3824. https://doi.org/10.1128/AEM.03124-09
- Cuyvers, S., Dornez, E., Moers, K., Pollet, A., Delcour, J. and Courtin, C. 2011. Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases. Enzyme Microb. Technol. 49, 305-311. https://doi.org/10.1016/j.enzmictec.2011.05.005
- de Almeida, M. N., Guimarães, V. M., Bischoff, K. M., Falkoski, D. L., Pereira, O. L., Gonçalves, D. S. and de Rezende, S. T. 2011. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl. Biochem. Biotechnol. 165, 594-610. https://doi.org/10.1007/s12010-011-9278-z
- Diaz, I., Donoso-Bravo, A. and Fdz-Polanco, M. 2011. Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour Technol. 102, 10139-10142. https://doi.org/10.1016/j.biortech.2011.07.096
- Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T. and Sawayama, S. 2010. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb. Technol. 48, 162-168.
- Hu, J., Arantes, V. and Saddler, J. N. 2011. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnol. Biofuels. 4, 36. https://doi.org/10.1186/1754-6834-4-36
- Jung, K. H., Chun, Y. C., Lee, J. C., Kim, J. H. and Yoon, K. H. 1996. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol. Lett. 18, 1077-1082. https://doi.org/10.1007/BF00129735
-
Kanna, M., Yano, S., Inoue, H., Fujii, T. and Sawayama, S. 2011. Enhancement of
${\beta}$ -xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express. 1, 15. https://doi.org/10.1186/2191-0855-1-15 - Kataria, R. and Ghosh, S. 2011. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour. Technol. 102, 9970-9975. https://doi.org/10.1016/j.biortech.2011.08.023
- Ma, X. D., Ke, T., Xiong, L., Yan, H. and Ma, L. X. 2007. A new plate method for screening of polysaccharide-degrading enzymes and their producing microorganisms. Wei Sheng Wu Xue Bao. 47, 1102-1104.
- Metz, B., Seidl-Seiboth, V., Haarmann, T., Kopchinskiy, A., Lorenz, P., Seiboth, B. and Kubicek, C. P. 2011. Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 10, 1527-1535. https://doi.org/10.1128/EC.05014-11
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
- Peng, L. and Gutterson, N. 2011. Energy crop and biotechnology for biofuel production. J. Intergr. Plant Biol. 53, 253-256. https://doi.org/10.1111/j.1744-7909.2010.01014.x
- Tomme, P., Warren, R. A. and Gilkes, N. R. 1995. Cellulose hydrolysis by bacteria a fungi. Adv. Microbial. Physiol. 37, 1-81. https://doi.org/10.1016/S0065-2911(08)60143-5
- Sambrook, J., Brent, R. and Kingston, T. 1987. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
- Silva, G. G., Couturier, M., Berrin, J. G., Buléon, A. and Rouau, X. 2012. Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol. 103, 192-200. https://doi.org/10.1016/j.biortech.2011.09.073
- Suzuki, T., Ibata, K., Hatsu, M., Takamizawa, K. and Kawai, K. 1997. Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J. Ferment. Bioeng. 84, 86-89. https://doi.org/10.1016/S0922-338X(97)82792-4
- Várnai, A., Huikko, L., Pere, J., Siika-Aho, M. and Viikari, L. 2011. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol. 102, 9096-9104. https://doi.org/10.1016/j.biortech.2011.06.059
- Xie, G. and Peng, L. 2011. Genetic engineering of energy crops: a strategy for biofuel production in China. J. Intergr. Plant Biol. 53, 143-150. https://doi.org/10.1111/j.1744-7909.2010.01022.x
- Yang, D., Weng, H., Wang, M., Xu, W., Li, Y. and Yang, H. 2010. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol. Biol. Rep. 37, 1923-1929. https://doi.org/10.1007/s11033-009-9635-y
- Yu, L., Z. Chen, X., Tong, X., Li, K. and Li, W. W. 2012. Anaerobic degradation of microcrystalline cellulose: Kinetics and micro-scale structure evolution. Chemosphere 86, 348-353. https://doi.org/10.1016/j.chemosphere.2011.09.049
- Zhang, Y., Han, B. and Ezeji, T. C. 2012. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N. Biotechnol. 29, 345-351. https://doi.org/10.1016/j.nbt.2011.09.001
- Zhang, J., Tuomainen, P., Siika-Aho, M. and Viikari, L. 2011. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol. 102, 9090-9095. https://doi.org/10.1016/j.biortech.2011.06.085
- Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S. and Beltramini, J. 2011. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588-5617. https://doi.org/10.1039/c1cs15124j
- Zhou, J., Bao, L., Chang, L., Liu, Z., You, C. and Lu, H. 2012. Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett. Appl. Microbiol. 54, 79-87. https://doi.org/10.1111/j.1472-765X.2011.03175.x
-
Zhou, J., Bao, L., Chang, L., Zhou, Y. and Lu, H. 2012. Biochemical and kinetic characterization of GH43
${\beta}$ -D: -xylosidase/${\alpha}$ -L: -arabinofuranosidase and GH30${\alpha}$ -L: -arabinofuranosidase/${\beta}$ -D: -xylosidase from rumen metagenome. J. Ind. Microbiol. Biotechnol. 39, 143-152. https://doi.org/10.1007/s10295-011-1009-5 - Zvidzai, C. J., Hatti-Kaul, R., Sithole-Niang, I., Zvauya, R. and Delgado, O. 2002. Cloning, sequencing and expression of an endo-b-1,4-glucanase (celG) gene of a Bacillus subtilis CHZ1. J. Appl. Sci. South Afr. 8, 65-75.
피인용 문헌
- Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.442
- Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.286