DOI QR코드

DOI QR Code

Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes

  • Park, Chang-Su (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Kang, Dae-Ook (Department of Biochemistry and Health Science, Changwon National University) ;
  • Choi, Nack-Shick (Woori Life Science Co., Ltd.)
  • 투고 : 2012.03.21
  • 심사 : 2012.05.30
  • 발행 : 2012.07.30

초록

Carboxymethylcellulose (CM-cellulose)와 Beechwood xylan을 각각 기질로 사용하여 trypan blue를 첨가하여 제작한 Agar-LB 배지 상에서 명확한 활성환을 형성하는 균주를 cellulase와 xylanase 생산 균주로 단리하였다. 단리한 균주 유래의 16S rRNA 유전자 및 API 50 kit를 분석한 결과 Bacillus subtilis와 약 99.5%의 높은 상동성을 보였기에 본 균주를 Bacillus subtilis로 동정하여 B. subtilis NC1로 명명하였다. B. subtilis NC1 유래 cellulase와 xylanase는 CM-cellulose와 Beechwood xylan에 대하여 각각 높은 효소 활성을 보였으며, 두 효소 모두 pH 5.0과 $50^{\circ}C$의 조건하에서 가장 높은 효소 활성을 보였다. B. subtilis NC1 균주 유래 cellulase와 xylanase 유전자를 cloning하기 위하여 shot-gun cloning 방법을 이용하여 B. subtilis NC1 염색체 DNA로부터 효소 유전자를 cloning하여 유전자 배열을 규명한 결과 cellulase 유전자는 아미노산 499개를 암호화하는 1,500 bp의 open reading frame (ORF)으로 이루어져 있었으며, 아미노산 배열로부터 추정되는 분자량은 55,251 Da 이었다. 그리고, xylanase에 대한 유전자는 아미노산 422개를 암호화하는 1,269 bp의 ORF로 이루어져 있었으며 유전자 유래 아미노산 배열로부터 추정되는 단백질 분자량은 47,423 Da 이었다. 두 효소의 아미노산 배열을 이용하여 상동성을 검토한 결과 cellulase는 glycoside hydrolase family (GH) 5에 속하는 cellulase와 xylanase는 GH30에 속하는 xylanase와 높은 상동성을 나타내었다.

A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.

키워드

참고문헌

  1. Beguin, P. and Aubert, J. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  2. Cai, S., Li, J., Hu, F., Zhang, K., Luo, Y., Janto, B., Boissy, R., Ehrlich, G. and Dong, Y. 2010. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol. 76, 3818-3824. https://doi.org/10.1128/AEM.03124-09
  3. Cuyvers, S., Dornez, E., Moers, K., Pollet, A., Delcour, J. and Courtin, C. 2011. Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases. Enzyme Microb. Technol. 49, 305-311. https://doi.org/10.1016/j.enzmictec.2011.05.005
  4. de Almeida, M. N., Guimarães, V. M., Bischoff, K. M., Falkoski, D. L., Pereira, O. L., Gonçalves, D. S. and de Rezende, S. T. 2011. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl. Biochem. Biotechnol. 165, 594-610. https://doi.org/10.1007/s12010-011-9278-z
  5. Diaz, I., Donoso-Bravo, A. and Fdz-Polanco, M. 2011. Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour Technol. 102, 10139-10142. https://doi.org/10.1016/j.biortech.2011.07.096
  6. Hideno, A., Inoue, H., Tsukahara, K., Yano, S., Fang, X., Endo, T. and Sawayama, S. 2010. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb. Technol. 48, 162-168.
  7. Hu, J., Arantes, V. and Saddler, J. N. 2011. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnol. Biofuels. 4, 36. https://doi.org/10.1186/1754-6834-4-36
  8. Jung, K. H., Chun, Y. C., Lee, J. C., Kim, J. H. and Yoon, K. H. 1996. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol. Lett. 18, 1077-1082. https://doi.org/10.1007/BF00129735
  9. Kanna, M., Yano, S., Inoue, H., Fujii, T. and Sawayama, S. 2011. Enhancement of ${\beta}$-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express. 1, 15. https://doi.org/10.1186/2191-0855-1-15
  10. Kataria, R. and Ghosh, S. 2011. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour. Technol. 102, 9970-9975. https://doi.org/10.1016/j.biortech.2011.08.023
  11. Ma, X. D., Ke, T., Xiong, L., Yan, H. and Ma, L. X. 2007. A new plate method for screening of polysaccharide-degrading enzymes and their producing microorganisms. Wei Sheng Wu Xue Bao. 47, 1102-1104.
  12. Metz, B., Seidl-Seiboth, V., Haarmann, T., Kopchinskiy, A., Lorenz, P., Seiboth, B. and Kubicek, C. P. 2011. Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 10, 1527-1535. https://doi.org/10.1128/EC.05014-11
  13. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  14. Peng, L. and Gutterson, N. 2011. Energy crop and biotechnology for biofuel production. J. Intergr. Plant Biol. 53, 253-256. https://doi.org/10.1111/j.1744-7909.2010.01014.x
  15. Tomme, P., Warren, R. A. and Gilkes, N. R. 1995. Cellulose hydrolysis by bacteria a fungi. Adv. Microbial. Physiol. 37, 1-81. https://doi.org/10.1016/S0065-2911(08)60143-5
  16. Sambrook, J., Brent, R. and Kingston, T. 1987. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
  17. Silva, G. G., Couturier, M., Berrin, J. G., Buléon, A. and Rouau, X. 2012. Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol. 103, 192-200. https://doi.org/10.1016/j.biortech.2011.09.073
  18. Suzuki, T., Ibata, K., Hatsu, M., Takamizawa, K. and Kawai, K. 1997. Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J. Ferment. Bioeng. 84, 86-89. https://doi.org/10.1016/S0922-338X(97)82792-4
  19. Várnai, A., Huikko, L., Pere, J., Siika-Aho, M. and Viikari, L. 2011. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol. 102, 9096-9104. https://doi.org/10.1016/j.biortech.2011.06.059
  20. Xie, G. and Peng, L. 2011. Genetic engineering of energy crops: a strategy for biofuel production in China. J. Intergr. Plant Biol. 53, 143-150. https://doi.org/10.1111/j.1744-7909.2010.01022.x
  21. Yang, D., Weng, H., Wang, M., Xu, W., Li, Y. and Yang, H. 2010. Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol. Biol. Rep. 37, 1923-1929. https://doi.org/10.1007/s11033-009-9635-y
  22. Yu, L., Z. Chen, X., Tong, X., Li, K. and Li, W. W. 2012. Anaerobic degradation of microcrystalline cellulose: Kinetics and micro-scale structure evolution. Chemosphere 86, 348-353. https://doi.org/10.1016/j.chemosphere.2011.09.049
  23. Zhang, Y., Han, B. and Ezeji, T. C. 2012. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. N. Biotechnol. 29, 345-351. https://doi.org/10.1016/j.nbt.2011.09.001
  24. Zhang, J., Tuomainen, P., Siika-Aho, M. and Viikari, L. 2011. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour Technol. 102, 9090-9095. https://doi.org/10.1016/j.biortech.2011.06.085
  25. Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S. and Beltramini, J. 2011. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588-5617. https://doi.org/10.1039/c1cs15124j
  26. Zhou, J., Bao, L., Chang, L., Liu, Z., You, C. and Lu, H. 2012. Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett. Appl. Microbiol. 54, 79-87. https://doi.org/10.1111/j.1472-765X.2011.03175.x
  27. Zhou, J., Bao, L., Chang, L., Zhou, Y. and Lu, H. 2012. Biochemical and kinetic characterization of GH43 ${\beta}$-D: -xylosidase/${\alpha}$-L: -arabinofuranosidase and GH30 ${\alpha}$-L: -arabinofuranosidase/${\beta}$-D: -xylosidase from rumen metagenome. J. Ind. Microbiol. Biotechnol. 39, 143-152. https://doi.org/10.1007/s10295-011-1009-5
  28. Zvidzai, C. J., Hatti-Kaul, R., Sithole-Niang, I., Zvauya, R. and Delgado, O. 2002. Cloning, sequencing and expression of an endo-b-1,4-glucanase (celG) gene of a Bacillus subtilis CHZ1. J. Appl. Sci. South Afr. 8, 65-75.

피인용 문헌

  1. Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.442
  2. Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.286