DOI QR코드

DOI QR Code

단배성 제주 재래귤 및 만다린잡종에서 자연 발생적인 배수체의 발생 빈도

Frequency of Spontaneous Polyploids in Monoembryonic Jeju Native Citrus Species and Some Mandarin Cultivars

  • 채치원 (국립원예특작과학원 감귤시험장) ;
  • 윤수현 (국립원예특작과학원 감귤시험장) ;
  • 박재호 (국립원예특작과학원 감귤시험장) ;
  • 김민주 (국립원예특작과학원 감귤시험장) ;
  • 고상욱 (국립원예특작과학원 감귤시험장) ;
  • 송관정 (제주대학교 생물산업학부) ;
  • 이동훈 (국립원예특작과학원 기획조정과)
  • Chae, Chi-Won (Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yun, Su-Hyun (Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, Jae-Ho (Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Min-Ju (Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Koh, Sang-Wook (Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Song, Kwan-Jeong (Faculty of Bioscience and Industry, College of Applied Life Sciences, Jeju National University) ;
  • Lee, Dong-Hun (Planning and Coordination Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 투고 : 2012.06.11
  • 심사 : 2012.07.27
  • 발행 : 2012.07.30

초록

배수체는 무핵 감귤 육종 프로그램 있어서 잠재적으로 매우 중요한 유전자원이다. 무핵성은 만다린 품종이 갖추어야 할 가장 유망한 형질 중 하나이고 3배체는 영구적으로 무핵이다. 새로운 3배체 잡종은 이종속간 배수체의 교배 또는 저빈도의 2배성 배우체 형성과 합성 같은 행동에 기인된 2배체 이종간 교배로도 이룰 수 있다. 그러나 소립의 $F_1$ 합성 종자로 발달된 이 같은 형태에 기초한 육종은 효과적인 무균적 배 적출 및 배양법 없이는 불가능하다. 본 연구에서, 무균의 배배양을 이용하여 단배의 2배체 제주 재래귤과 만다린잡종에서 방임 수분되어 자연적으로 발생한 소립종자로부터 유묘를 얻었고 배수 검정기를 이용하여 배수 정도를 검정하여 다양한 수준의 배수체를 획득하였다. 총 792 과실을 이용하여 10,289 개의 획득된 종자를 분석하여 과실당 평균 13개의 종자가 함유됨을 알 수 있었다. 정상종자와 유사한 형태로 발달된 소립종자의 과실 내 평균 함유율은 7.1%였다. 과실당 소립종자의 평균 출현 빈도는 '클레멘타인', '하레히메', '감자', '편귤', '사두감' 그리고 '윌킹' 순으로 각각 8.9, 10.2, 2.6, 3.1, 2.8, 그리고 7.0%였다. 종자 크기가 조사된 '클레멘타인' 품종 내 정상 종자의 평균 크기는 $49.52{\pm}0.07mm^2$ 였고 반면에 소립종자는 $7.95{\pm}0.04mm^2$로 전자보다 1/6배 더 작았다. 이러한 분류 기준으로 총 731개의 소립종자를 획득하였다. 이들 소립종자 중 일부는 무균의 배 배양이 수행되었고 기내 발아되어 회복된 모든 개체들은 단 하나의 배가 확인되었고 건전하게 발육하였다. 3배체 발생 빈도 비교에 있어서, '클레멘타인'은 '윌킹'과 제주 재래귤인 '편귤' 품종에 비해 각각 14배와 109배 높게 나타난 바 전자는 3배체 발생이 높음을 알 수 있었다. 자연 발생적인 배수체에 관한 기초 정보는 무핵 감귤 개발을 위해 3배체 고정종 합성에 활용될 수 있으며 그 효율 증진에도 기여할 것이라 여겨진다.

Polyploids are a potentially important germplasm source in seedless citrus breeding program. Seedlessness is one of the most promising traits of commercial mandarin breeds that mandarin triploid hybrids possess permanently. The formation of new constant triploid hybrids can be recovered through diploid species hybridization from the fusion of divalent gametes at low frequencyor intra-and inter-ploidy crosses. However, extensive breeding work based on small $F_1$ hybrid seeds developed is impossible without a very effective aseptic methodology and ploidy event. In this study, in vitro embryo culture was employed to recover natural hybrids from monoembryonic diploid, open-pollinated mandarin. Flow cytometry was used to determine ploidy level. A total of 10,289 seeds were extracted from 792 fruits having approximately 13 seeds per fruit. Average frequency of small seeds developed was 7.1%, while the average frequency of small seeds per fruit were: 8.9% for 'Clementine' 10.2% for 'Harehime' 2.6% for 'Kamja' 3.1% for 'Pyunkyool' 2.8% for 'Sadookam' and 7.0% for 'Wilking' mandarin. Average size of a perfect seed was $49.52{\pm}0.07mm^2$ ('Clementine') while the small seed measured $7.95{\pm}0.04mm^2$ ('Clementine'), which was about 1/6 smaller than the perfect seed. In total, 731 small seeds were obtained and all of them contained only one embryo per seed. The efficiency of 'Clementine' was 14 times higher than 'Wilking' and more than 109 times higher than 'Pyunkyool'. The basic information on spontaneous polyploidy provides for the hybridization of constant triploids and increases the efficiency of conventional cross.

키워드

참고문헌

  1. Aleza, P., Jua'rez, J., Cuenca, J., Ollitrault, P. and Navarro, L. 2010. Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from $2x\;{\times}\;2x$ sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep. 29, 1023-1034. https://doi.org/10.1007/s00299-010-0888-7
  2. Aleza, P., Froelicher, Y., Schwarz, S., Agusti, M., Hernandez M., Juarez J., Luro, F., Morillon, R., Navarro, L. and Ollitrault, P. 2011. Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann. Bot. 108, 37-50. https://doi.org/10.1093/aob/mcr099
  3. Asker, S. E. and Jerling, L. 1992. Apomixis in plants. CRC Press, Boca Raton, Ann Arbor, London, Tokyo.
  4. Barrett, H. C. and Hutchison, D. J. 1978. Spontaneous tetraploidy in apomictic seedlings of Citrus. Econ. Bot. 32, 27-45. https://doi.org/10.1007/BF02906727
  5. Bhojwani, S. S. and Razdan, M. K. 1983. Plant tissue culture: Theory and Practices, Developments in Crop Sciences, 5. Elsevier, Amsterdam.
  6. Cameron J. W. and Burnett, R. H. 1978. Use of sexual tetraploid seed parents for production of triploid citrus hybrids. HortScience 13, 167-169.
  7. Cameron, J. W. and Frost, H. B. 1968. Genetic, breeding and nucellar embryony. pp. 325-370, In Reuther, W., Batchelor L. D. and Webber, H. J. (eds.), The citrus industry, Vol. 1. Riverside, CA: University of California.
  8. Cameron, J. W. and Soost, R. K. 1969. Characters of new populations of Citrus polyploids, and the relation between tetraploidy in the pollen parent and hybrid tetraploid progeny. pp. 199-205, In Chapman, H. D. (ed.), Proceedings of the International Citric Symposium, Vol. 1, University of California at Riverside.
  9. Chen, Z. J. 2007. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Ann. Rev. Plant Biol. 58, 377-406. https://doi.org/10.1146/annurev.arplant.58.032806.103835
  10. Cocking, E. C. 1986. The tissue culture revolution. pp. 3-20, In Withers, L. A. and Anderson, P. G. (eds.), Plant Tissue Culture and its Agric. Application. Butterworth.
  11. Cuenca, J., Froelicher, Y., Aleza, P., Jua'rez, J., Navarro, L. and Ollitrault, P. 2011. Multilocus half tetrad analysis and centromere mapping in Citrus: evidence of SDR mechanism for 2n mega gametophyte production and evidence partial chromosome interference in mandarin cv Fortune. Heredity 107, 462-470. https://doi.org/10.1038/hdy.2011.33
  12. Esen, A. and Soost, R. K. 1971. Unexpected triploids in Citrus: their origin, identification and possible use. J. Hered. 62, 329-333.
  13. Esen, A. and Soost, R. K. 1972. Tetraploid progenies from 2x X 4x crosses of Citrus and their origin. J. Amer. Soc. Hort. Sci, 97, 410-414.
  14. Esen, A. and Soost, R. K. 1973. Precocious development and germination of spontaneous triploid seeds in Citrus. J. Hered. 64, 147-154.
  15. Esen, A., Soost, R. K. and Geraci, G. 1979. Genetic evidence for the origin of diploid mega-gametophytes in citrus. J. Hered. 70, 5-8.
  16. Fatima, B., Usman, M., Khan, I. A., Khan, M. S. and Khan, M. M. 2010. Exploring citrus cultivars for underdeveloped and shriveled sees: A valuable resource for spontaneous polyploidy. Pak. J. Bot. 42, 189-200.
  17. Frost, H. B. and Soost, R. K. 1968. Seed reproduction, development of gametes and embryos. pp. 290-324, In:Reuther, W, Batchelor, L. D., Webber, H. B., (eds.), The citrus industry, vol. 2. Berkeley: University of California.
  18. Frost, H. B. 1925. The chromosomes of Citrus. J. Washington Acad. Sci. 15, 1-3.
  19. Geraci, G., Esen, A. and Soost, R. K. 1975. Triploid progenies from 2x - 2x crosses of Citrus cultivars. J. Hered. 66, 177-178.
  20. Germana, M. A. and Chiancone, B. 2001. Gynogenetic haploids of citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss. Org. 66, 59-66. https://doi.org/10.1023/A:1010627310808
  21. Germana, M. A., Wang, Y. Y., Barbagallo, M. G., Iannolino, G., and Crescimanno, F. G. 1994. Recovery of haploid and diploid plantlets from anther culture of Citrus clementina Hort. ex Tan. and Citrus reticulata Blanco. J. Hort. Sci. 69, 473-448.
  22. Gmitter, F. J. J., Ling, X. B. and Deng, X. X. 1990. Induction of triploid Citrus plants from endosperm calli in vitro. Theor. Appl. Genet. 80, 785-790.
  23. Guo, Y., Zhao Y., Li, K., Liu, Z., Lin, H., Guo, X. and Li, C. 2011. Embryo rescue of crosses between diploid and tetraploid grape cultivars and production of triploid plants. Afr. J. Biotechnol. 10, 19005-19010.
  24. Hernandez, E., Couture, R., Rouseff, R., Chen, C. S. and Barros, S. 1992. Evaluation of ultrafiltration and adsorption to debitter grapefruit juice and grapefruit pulp wash. J. Food Sci. 57, 664-670. https://doi.org/10.1111/j.1365-2621.1992.tb08066.x
  25. Hidaka, T., Yamada, Y. and Shichijo, T. 1979. In vitro diffenentiation of halpoid plants by anther culture in Poncirus trifoliata (L.) Raf. Jpn. J. Breeding 29, 248-254. https://doi.org/10.1270/jsbbs1951.29.248
  26. Hizume, M. 1991. Analysis of plant chromosomes using a fluorescent banding method. Plant Cell Tech. 3, 78-83 (in Japanese, with English abstract).
  27. Iwamasa M., Nito, N. and Ling, J. T. 1988. Intra and intergeneric hybridization in the orange subfamily, Auranthioideae. Proc. Int. Soc. Citriculture 6, 123-130.
  28. Kobayashi, S., Ieda, I. and Nakatani, M. 1981. Role of the primordium cell in nucellar embryogenesis in citrus. In: Proceedings of 4th International Citrus Congress. Tokyo: Proc. Int. Soc. Citriculture 44-48.
  29. Kola, O. Kaya, C., Duran, H. and Altan, A. 2010. Removal of limonin bitterness by treatment of ion exchange and adsorbent resins. Food Sci. Biotechnol. 19, 411-416. https://doi.org/10.1007/s10068-010-0058-2
  30. Koltunow, A. M. 1993. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5, 1425-1437. https://doi.org/10.1105/tpc.5.10.1425
  31. Krug, C. A. 1943. Chromosome numbers in the subfamily Aurantioideae with special reference to the genus Citrus. Bot. Gaz. 48, 602-611.
  32. Lapin, W. K. 1937. Investigations on polyploidy in Citrus work. All-Union Scientific Research Institute Humid Subtropics, 1, 1-68.
  33. Laibach, F. 1925. Das Taubwerden von Bastardsamen and die kunstliche Aufzucht fruh absterbender Bastardembryonen. Z. Bot. 17, 417-459.
  34. Liu, Y. Z., Ma, X. T., Zhang, H. Y., Peng, S. and Deng, X. X. 2004. Status quo of Ponkan (Citrus reticulata Blanco) fruit quality and quality comparison between several production areas in China. Acta Hortic. Sin. 31, 584-588.
  35. Luro, F., Maddy, F., Ollitrault, P. and Rist, D. 2000. Identification of 2n gamete parental origin and mode of nuclear restitution of spontaneous triploid Citrus hybrids. Proc. Int. Soc. Citriculture 168-169.
  36. Lyerene, P. M., Vorsa, N. and Ballington, J. R. 2003. Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica 133, 27-36. https://doi.org/10.1023/A:1025608408727
  37. Murashige, T. and Tucker, D. P. H. 1969. Growth factor requirement of citrus tissue culture. pp. 1155-1161, In Chapmam, H. D. (ed.), Proc. First Int. Citrus Symp. Vol. 3, University of California, Riverside,
  38. Murashige, T. and Skoog, R. 1962. Arevised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  39. Nogler, G. A. 1984. Gametophytic apomixis. pp. 475-518, In Johri, B. M. (ed.), Embryology of Angiosperms. Springer, Berlin Heidelberg New York.
  40. Ollitrault, P., Dambier, D., Vanel, F. and Froelicher, Y. 2000. Creation of triploid Citrus hybrids by electrofusion of haploid and diploid protoplasts. Acta Hortic. 535, 191-197.
  41. Ollitrault, P., Luro, F. and Yamamoto, M. 2007. Seedlessness and ploidy manipulations pp. 197-218, In Khan, I. A. (ed.), Citrus Genetics, Breeding and Biotechnology. CAB International UK.
  42. Oiyama, I. and Kobayashi, S. 1990. Polyembryony in undeveloped monoembryonic diploid seeds crossed with a citrus tetraploid. Hortscience 25, 1276-1277.
  43. Oiyama, I. and Kobayashi, S. 1993. Haploids obtained from diploid ${\times}$ triploid crosses of citrus. J. Japan Soc. Hort. Sci. 62, 89-93. https://doi.org/10.2503/jjshs.62.89
  44. Peloquin, S. J., Boiteaux, L. S., Simon, P. W. and Jansky, S. H. 2008. A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J. Hered. 99, 177-181.
  45. Raza, H., Khan, M. M. and Khan, A. A. 2003 Seedlessness in Citrus. Int. J. Agri. Biol. 5, 388-391.
  46. Sen-Cai, Z. 1981. Thirty years achievements in citrus varietal improvement in China. Proc. Int. Soc. Citriculture 1, 51-55.
  47. Soares, F., Wdos, S. and Vasque Araujo, J. E., de Cunhe, M. A. P., de Cunha Sobrinho, A. P. and Passos, O. S. 1992. Degree of polyembryony, size and survival of the zygotic embryo in citrus. Proc. Int. Soc. Citriculture 1, 135-738.
  48. Song, K. J., Kim, S. B., Park, J. H., Oh, E. U., Lee, K. G., Kim, D. W., Kang, J. H., Kim, J. S., Oh, J. H. and Gmitter, F. G. 2011. Frequency and growth characteristics of polyploids occurred spontaneously in some mandarin hybrids. Kor. J. Hort. Sci. Technol. 29, 617-622.
  49. Soost, R. K. and Cameron, J. W. 1980. 'Oroblanco', a triploid pummelo-grapefruit hybrid. HortScience 15, 667-669.
  50. Soost, R. K. and Cameron, J. W. 1985. 'Melogold', a triploid pummelo-grapefruit hybrid. HortScience 29, 1134-1135.
  51. Toolapong, P. and Komatsu, H. 1996. Triploids and haploid progenies derived from small seeds of Banpeiyu, a pummelo, crossed with Ruby Red grapefruit. J. Japan Soc. Hort. Sci., 65, 255-260. https://doi.org/10.2503/jjshs.65.255
  52. Van Dijk, P. J. and Bakx-Schotman, J. M. T. 2004. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale s.l.) is controlled by a sex specific dominant locus. Genetics 166, 483-492. https://doi.org/10.1534/genetics.166.1.483
  53. Vardi, A. 1992. Conventional and novel approaches to citrus breeding. Proc. Int. Soc. Citriculture 1, 39-43.
  54. Wethern, M. 1991. Citrus debittering with ultrafiltration/adsorption combined technology. pp. 48-46. In: 37th Annual Citrus Engineering Conference. March 21. American Society of Mechanical Engineers, Lake Alfred, FL, USA.
  55. Yamamoto, M., Abkenar, A. A., Matsumoto. R., Nesumi, H., Yoshida, T., Kuniga, T., Kubo, T. and Tominaga, S. 2007. CMA Banding Patterns of Chromosomes in Major Citrus Species. J. Japan Soc. Hort. Sci. 76, 36-40. https://doi.org/10.2503/jjshs.76.36
  56. Yamamoto, M., Yamada, Y., Matsumoto, R., Ikemiya, H. and Okudai, N. 1992. Inheritance of seed number in citrus. Bul. Fruit Tree Res. Sta. 23, 47-56.

피인용 문헌

  1. Characterization of microspore development and pollen tube growth response to self and cross-pollination in Jeju old local citrus species vol.56, pp.2, 2015, https://doi.org/10.1007/s13580-015-0133-y