DOI QR코드

DOI QR Code

Effect of Processing Parameters on the Microstructure and Band Gap Energy of 1D-Na2Ti6O13

1D-Na2Ti6O13 합성 변수에 따른 미세구조 및 밴드 갭 에너지 변화

  • Yun, Kang-Seop (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Ku, Hye-Kyung (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kang, Woo-Seung (Department of Metallurgical & Materials Engineering, Inha Technical College) ;
  • Kim, Sun-Jae (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • 윤강섭 (세종대학교 나노신소재공학부) ;
  • 구혜경 (세종대학교 나노신소재공학부) ;
  • 강우승 (인하공업전문대학 금속재료학과) ;
  • 김선재 (세종대학교 나노신소재공학부)
  • Received : 2012.05.10
  • Accepted : 2012.07.24
  • Published : 2012.08.01

Abstract

Nano-structured one-dimensional $Na_2Ti_6O_{13}$ particles were synthesized by a molten salt process. Effects of processing parameters on the microstructure and band gap energy of the $Na_2Ti_6O_{13}$ powder were studied in this paper. For the synthesis of the $Na_2Ti_6O_{13}$ particles, two different raw materials of tubular shaped Na-titanate (Na-TiNT) and spherical shaped $TiO_2$ were utilized. Synthesizing with the raw material of Na-TiNT, around 70nm thick 1D-$Na_2Ti_6O_{13}$ with the bandgap energy of 3.5 eV was obtained at $810^{\circ}C$. Below $810^{\circ}C$ or without the presence of NaCl, 1D-$Na_2Ti_6O_{13}$ was in a relatively short in length and agglomerated state. With the processing temperature increased, the thickness of the 1D-$Na_2Ti_6O_{13}$ was also observed to be increased. On the other hand, when $TiO_2$ was employed as a raw material, the mixed amount of $Na_2CO_3$ played an important role in transforming the morphology and phase of the raw material, affecting the bandgap energy of the synthesized product. Specific surface area of the synthesized 1D-$Na_2Ti_6O_{13}$ was significantly affected by the raw and mixed materials as well as processing temperature. When Na-TiNT was processed at $810^{\circ}C$ with NaCl, the specific surface area of the 1D-$Na_2Ti_6O_{13}$ showed the best value of 30.63 $m^2/g$.

Keywords

References

  1. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Adv. Mater., 20, 54 (2008). https://doi.org/10.1002/adma.200701819
  2. S. Ogura, M. Kohno, K. Sato, and Y. Inoue, Phys. Chem. Chem. Phys., 1, 179 (1999). https://doi.org/10.1039/a806734a
  3. L. Zhen, C. Y. Xu, W. S. Wang, C. S. Lao, and Q. Kuang, Appl. Surf. Sci., 255, 4149 (2002).
  4. K. R. Zhu, Y. Yuan, M. S. Zhang, J. M. Hong, Y. Deng, and Z. Yin, Solid State Commun., 144, 450 (2007). https://doi.org/10.1016/j.ssc.2007.09.015
  5. M. Qamar, C. R. Yoon, H. J. Oh, D. H. Kim, J. H. Jho, K. S. Lee, W. J. Lee, H. G. Lee, and S. J. Kim, Nanotechnology, 17, 5922 (2006). https://doi.org/10.1088/0957-4484/17/24/004
  6. M. Holzinger, J. Maier, and W. Sitte, Solid State Ion., 86, 1055 (1996). https://doi.org/10.1016/0167-2738(96)00250-0
  7. M. Holzinger, A. Benisek, W. Schnelle, E. Gmelin, J. Maier, and W. Sitte, J. Chem. Thermodyn., 35, 1469 (2003). https://doi.org/10.1016/S0021-9614(03)00125-3
  8. S. Baliteau, A. L. Sauvet, C. Lopez, and P. Fabry, Solid State Ion., 178, 1517 (2007). https://doi.org/10.1016/j.ssi.2007.09.002
  9. K. Teshima, K. Yubuta, T. Shimodaira, T. Suzuki, M. Endo, T. Shishido, and S. Oishi, Cryst. Growth Des., 8, 465 (2008). https://doi.org/10.1021/cg070341p
  10. K. B. Lee, S. W. Lee, and S. B. Park, J. Cryst. Growth, 311, 4365 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.054
  11. L. M. Torres-Martinez, I. Juarez-Ramirez, K. D. Angel-Sanchez, L. Garza-Tovar, A. Cruz-Lopez, and G. D. Angel, J. Sol-Gel Sci. Technol., 47, 158 (2008). https://doi.org/10.1007/s10971-008-1790-4
  12. E. Morgado Jr, B. Marinkovic, P. Jardim, M. Abreu, and F. Rizzo, J. Solid State Chem., 182, 172 (2009). https://doi.org/10.1016/j.jssc.2008.10.008
  13. X. Qin, L. Jing, G. Tian, Y. Qu, and Y. Feng, J. Hazard. Mater., 172, 1168 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.120
  14. S. Papp, L. Korosi, V. Meynen, P. Cool, E. F. Vansant, and I. Dekany, J. Solid State Chem., 178, 1614 (2005). https://doi.org/10.1016/j.jssc.2005.03.001
  15. A. L. Sauvet, S. Baliteau, C. Lopez, and P. Fabry, J. Solid State Chem., 177, 4508 (2004). https://doi.org/10.1016/j.jssc.2004.09.008
  16. B. L. Wang, Q. Chen, R. H. Wang, and L. M. Peng, Chem. Phys. Lett., 376, 726 (2003). https://doi.org/10.1016/S0009-2614(03)01068-6
  17. D. H. Kim, H. S. Hong, S. J. Kim, J. S. Song, and K. S. Lee, J. Alloy. Compd., 375, 259 (2004). https://doi.org/10.1016/j.jallcom.2003.11.044