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Abstract

The inferences of data obtained from periodic inspection and type I censoring for
the three step stress accelerated life test are studied in this paper. The failure rate
function that a log-quadratic relation of stress and the tampered failure rate model are
considered under the exponential distribution. The optimal stress change times which
minimize the asymptotic variance of maximum likelihood estimators of parameters
is determined and the maximum likelihood estimators of the model parameters are
estimated. A numerical example will be given to illustrate the proposed inferential
procedures.

Keywords: Asymptotic variance, exponential distribution, Fisher information, optimum
plan, periodic inspection, tampered failure rate model, three step stress accelerated life
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1. Introduction

The life testing time under environment conditions may be very long and it is difficult
for extremely reliable units to make life testing at use stress. The accelerated life testings
(ALTs) are used to overcome this problem. ALTs are done on greater stresses than use stress
and then ALTs quickly yield informations on test units. Three types of models have been
mostly used on step stress ALTs. They are the tampered random variable (TRV) model by
DeGroot and Goel (1979), the cumulative exposure (CE) model by Nelson (1980) and the
tampered failure rate (TFR) model by Bhattacharyya and Soejoeti (1989).

The lifetimes of test units can be examined continuously or intermittently in the step
stress ALTs. The periodic inspection of life testing time is often used due to further re-
duction in time and cost, on the other hand earlier studies assumed continuous inspection.
The data from periodic inspection consists of only the number of failures in the inspection
intervals. Yum and Choi (1989) first studied asymptotic optimal ALTs plans for periodic
inspection and type I censoring. Bai et el. (1989) extended the results of Miller and Nel-
son (1983) that considered optimal plans for simple step stress accelerated life test to the
case of Type I censoring under periodic observation. Seo and Yum (1993) proposed several
approximate maximum likelihood estimators (MLEs) for the mean of exponential distribu-
tion and compared them by a Monte Carlo simulation. Islam and Ahmad (1994) studied
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the optimal ALTs plans for Weibull distribution under the constant stress ALTs with the
periodic inspection and type I censoring. Xiong and Ji (2004) studied the statistical infer-
ence of model parameters and optimum test plans using only grouped and Type I censored
data from a step stress ALTs. Ahmad et el. (2006) generalized the previous works on the
design for periodic inspection and Type I censoring under the constant stress ALTs. Moon
and Kim (2006) studied parameter estimation of the two-parameter exponential distribution
under three step-stress accelerated life test. Moon (2008) considered the estimation of model
parameters and optimum plans based on grouped and Type I censored data from three step
stress ALTs for exponential distribution under the TFR model. Moon and Park (2009) stud-
ied the optimum plan and the estimation of model parameters on periodic inspection with
Type I censoring under two step stress ALTs for exponential distribution under the TFR
model.

In this paper, the results of Moon and Park (2009) are extended to the case of three
step stress ALTs based on periodic inspection with type I censoring. The MLEs of model
parameters and optimum plan searching the optimal stress changing times are studied,
assuming that the lifetime of test units follows an exponential distribution under the TFR
model. In Section 2, the model and some necessary assumptions are described. In Section 3,
MLEs of the parameters and the optimum plan that minimizes the asymptotic variance of
the MLE of logarithm of the mean lifetime at use stress are obtained. A numerical example
is presented for the proposed inferential procedures in Section 4.

2. Model and assumptions

Suppose that there are four level stresses y0 < y1 < y2 < y3, where y0 is the use stress. In
the presentation of our results and without loss of generality, the following notation is used.

xi =
yi − y0
y3 − y0

, i = 0, 1, 2, 3.

All test units n are simultaneously put on stress x1 and inspections are conducted at pre-
set times t11,t12, · · · , t1K(1), but if all units do not fail before time t1K(1) (= τ1), the surviving
units are subjected to the stronger stress x2 and observed at pre-set times t21,t22, · · · , t2K(2),
but if all units on stress x2 do not fail before time t2K(2) (= τ2), the surviving units are
subjected to the stronger stress x3 and observed at pre-set times t31,t32, · · · , t3K(3) and
surviving units at time t3K(3) (= τc) are censored, where K(i) is the number of inspections
at stress xi, i = 1, 2, 3. At stress xi, the number of failures nij are recorded corresponding
pij , probability of failures in the interval (tij−1, tij ], i = 1, 2, 3, j = 1, 2 · · · ,K(i).

Some useful notations are given as follows.

(1) nij is the number of failed units during the inspection time interval (ti,j−1, tij ] at stress
xi, i = 1, 2, 3, j = 1, 2, · · · ,K(i),

(2) nc is the censored units at a censoring time τc,

(3) ni =
∑K(i)

j=1 nij , i = 1, 2, 3 and nc = n− (n1 + n2 + n3),

(4) pij = P (tij−1 < T ≤ tij), i = 1, 2, 3, j = 1, 2, · · · ,K(i) and pc = P (τc < T <∞), where
t10 = τ0 = 0, t1K(1) = τ1 = t20, t2K(2) = τ2 = t30, t3K(3) = τc.
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Suppose that stress response relationship of each test unit has the log-quadratic function
with the stress variable xi, which is given by

log θi = β0 + β1xi + β2x
2
i , i = 1, 2, 3, (2.1)

where β0, β1 and β2 are unknown model parameters.
The numbers of failed units nij , i = 1, 2, 3, j = 1, 2 · · · ,K(i) are used to estimate the

model parameters β0, β1 and β2, and then the model is extrapolated to make statistical
inferences under the use stress.

The probability distribution function f (t) for a test unit lifetime T at stress xi, i = 1, 2, 3
is given by

f(t) =



1

θ1
exp

(
−
t

θ1

)
, t ≤ τ1,

1

θ2
exp

(
−
t− τ1
θ2
−
τ1

θ1

)
, τ1 < t ≤ τ2,

1

θ3
exp

(
−
t− τ2
θ3
−
τ2 − τ1
θ2

−
τ1

θ1

)
, τ2 < t.

(2.2)

3. Maximum likelihood estimators and optimum plan

In this section, MLEs of the model parameters β0, β1 and β2 are obtained by Newton-
Rapshon method and the optimum plan for searching the optimal stress change times τ1
and τ2, which minimize the asymptotic variance of the MLE of logarithm of mean lifetime
at the use stress x0.The following notations to simplify equations are used.

u
(m)
ij−1(β0, β1, β2) = u

(m)
ij−1 = (tij−1 − τi−1)xmi exp(−β0 − β1xi − β2x2i )

+ (τi−1 − τi−2)xmi−1 exp(−β0 − β1xi−1 − β2x2i−1)

+ τi−2x
m
i−2 exp

(
−β0 − β1xi−2 − β2x2i−2

)
,

u
(m)
ij (β0, β1, β2) = u

(m)
ij = (tij − τi−1)xmi exp(−β0 − β1xi − β2x2i )

+ (τi−1 − τi−2)xmi−1 exp(−β0 − β1xi−1 − β2x2i−1)

+ τi−2x
m
i−2 exp

(
−β0 − β1xi−2 − β2x2i−2

)
,

u
(m)
3K(3)(β0, β1, β2) = u

(m)
3K(3) = (τc − τ2)xm3 exp(−β0 − β1x3 − β2

2x
2
3)

+ (τ2 − τ1)xm2 exp(−β0 − β1x2 − β2
2x

2
2)

+ τ1x
m
1 exp(−β0 − β1x1 − β2

2x
2
1)

for i = 1, 2, 3, j = 1, 2, · · · ,K(i) and m = 0, 1, · · · , 4 where x0 = 0 and τ0 = 0.
The likelihood function is given by

L ∝
3∏

i=1

K(i)∏
j=1

p
nij

ij · p
nc
c
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for i = 1, 2, 3, j = 1, 2, · · · ,K(i), where

pij = P (tij−1<T ≤ tij) = exp
(
−u(0)ij−1

)
− exp

(
−u(0)ij

)
, pc = P (T >τc) = exp

(
−u(0)3K(3)

)
.

Thus, the log likelihood function which is a function of unknown parameters β0, β1 and β2
is given by as follows.

logL(β0, β1, β2) ∝
3∑

i=1

K(i)∑
j=1

nij log pij + nc log pc.

The MLEs for the model parameters β0, β1 and β2 can be obtained by solving the following
equation in (3.1).

∂

∂βk
logL(β0, β1, β2) =

3∑
i=1

K(i)∑
j=1

nij ·
1

pij

(
∂pij

∂βk

)
+ nc ·

1

pc

(
∂pc

∂βk

)
= 0 (3.1)

for k = 0, 1, 2 where

∂pij

∂βk
= u

(k)
ij−1 exp(−u(0)ij−1)− u(k)ij exp(−u(0)ij ), i = 1, 2, 3,

∂pc

∂βk
= u

(k)
3K(3) exp

(
−u(0)3K(3)

)
.

The Fisher information matrix F is defined as F = (fkl), k, l = 0, 1, 2 and can be ob-
tained by taking the expected value of the second partial and mixed partial derivatives of
logL(β0, β1, β2) with respect to β0, β1 and β2 as follows.

∂2 logL(β0, β1, β2)

∂β2
k

=

3∑
i=1

K(i)∑
j=1

nij

pij

∂2pij
∂β2

k

−
1

pij

(
∂pij

∂βk

)2
+

nc

pc

∂2pc
∂β2

k

−
1

pc

(
∂pc

∂βk

)2
 ,

∂2 logL(β0, β1, β2)

∂βk∂βl
=

3∑
i=1

K(i)∑
j=1

nij

pij

[
∂2pij

∂βk∂βl
−

1

pij

(
∂pij

∂βk

)(
∂pij

∂βl

)]

+
nc

pc

[
∂2pc

∂βk∂βl
−

1

pc

(
∂pc

∂βk

)(
∂pc

∂βl

)]
,

for k 6= l = 0, 1, 2, where for i = 1, 2, 3,

∂2pij

∂β2
k

=
(

(u
(k)
ij−1)2 − u(2k)ij−1

)
exp(−u(0)ij−1)−

(
(u

(k)
ij )2 − u(2k)ij

)
exp(−u(0)ij ),

∂2pij

∂βk∂βl
=
(
u
(k)
ij−1u

(l)
ij−1 − u

(k+l)
ij−1

)
exp(−u(0)ij−1)−

(
u
(k)
ij u

(l)
ij − u

(k+l)
ij

)
exp(−u(0)ij ),

∂2pc

∂β2
k

=
(

(u
(k)
3K(3))

2 − u(2k)3K(3)

)
exp

(
−u(0)3K(3)

)
,

∂2pc

∂βk∂βl
=
(
u
(k)
3K(3)u

(l)
3K(3) − u

(k+l)
3K(3)

)
exp

(
−u(0)3K(3)

)
.
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The expected value of the second partial and mixed partial derivatives of logL(β0, β1, β2)
with respect to β0, β1 and β2 are given by

fkk = −E

(
∂2 logL

∂β2
k

)
= n


3∑

i=1

K(i)∑
j=1

 1

pij

(
∂pij

∂βk

)2

−

(
∂2pij

∂β2
k

)+
1

pc

(
∂pc

∂βk

)2

−
∂2pc

∂β2
k


= n

{
3∑

i=1

Qikk +Qckk

}
,

fkl = −E

(
∂2 logL

∂βk∂βl

)
= n

3∑
i=1

K(i)∑
j=1

[
1

pij

(
∂pij

∂βk

)(
∂pij

∂βl

)
−

(
∂2pij

∂βk∂βl

)]

+ n

[
1

pc

(
∂pc

∂βk

)(
∂pc

∂βl

)
−

(
∂2pc

∂βk∂βl

)]

= n

{
3∑

i=1

Qikl +Qckl

}

where

Qikl =

K(i)∑
j=1

[
1

pij

(
∂pij

∂βk

)(
∂pij

∂βl

)
−

∂2pij

∂βk∂βl

]
, Qckl =

1

pc

(
∂pc

∂βk

)(
∂pc

∂βl

)
−

∂2pc

∂βk∂βl

for k, l = 0, 1, 2 and i = 1, 2, 3.
The optimum plan for determining optimal stress change times τ∗1 and τ∗2 under three

step stress ALTs is presented, which minimize the asymptotic variance of log θ̂0, MLE of
logarithm of mean lifetime at the use stress x0.

The asymptotic covariance matrix, V of MLEs, β̂0, β̂1 and β̂2 for model parameters β0, β1
and β2 is given by

V = F−1 = (fkl)
−1

for k, l = 0, 1, 2 and the asymptotic variance of log θ̂0 is given by

Avar(log θ̂0) = (1, x0, x
2
0)V (1, x0, x

2
0)′

=
f11f22 − f212

f00 (f11f22 − f212) + f01 (f02f12 − f01f22) + f02 (f01f12 − f11f02)
. (3.2)

Then the optimal change times τ∗1 and τ∗2 minimizing the asymptotic variance, Avar(log θ̂0),
in (3.2) are unique solutions of the equations given by

f1(τ1, τ2) =
∂Avar(log θ̂0)

∂τ1
=

1

A

(
f

′

11f22 + f11f
′

22 − 2f12f
′

12

)
−
A

′

A2

(
f11f22 − f212

)
,
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f2(τ1, τ2) =
∂Avar(log θ̂0)

∂τ2
=

1

A
(fo11f22 + f11f

o
22 − 2f12f

o
12)−

Ao

A2

(
f11f22 − f212

)
(3.3)

where

A = |F | = f00(f11f22 − f212) + f01(f02f12 − f01f22) + f02(f01f12 − f02f11),

A
′

=
∂A

∂τ1
, Ao =

∂A

∂τ2
,

f
′

kl =
∂fkl

∂τ1
= n

[
3∑

i=1

∂Qikl

∂τ1
+
∂Qckl

∂τ1

]
, fokl =

∂fkl

∂τ2
= n

[
3∑

i=1

∂Qikl

∂τ2
+
∂Qckl

∂τ2

]

with

∂Q1kl

∂τ1
= 0,

∂Qikl

∂τ1
=

(
1

θ2
−

1

θ1

)
Qikl −

(
xk+l
2

θ2
−
xk+l
1

θ1

)
K(i)∑
j=1

pij , i = 2, 3,

∂Qckl
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1

θ2
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1

θ1

)
Qckl −

(
xk+l
2

θ2
−
xk+l
1

θ1

)
pc,

∂Q1kl

∂τ2
=
∂Q2kl

∂τ2
= 0,

∂Q3kl

∂τ2
=

(
1

θ3
−

1

θ2

)
Q3kl −

(
xk+l
3

θ3
−
xk+l
2

θ2
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K(i)∑
j=1

p3j ,

∂Qckl
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(
1

θ3
−

1

θ2

)
Qckl −

(
xk+l
3

θ3
−
xk+l
2

θ2

)
pc

for k, l = 0, 1, 2.

4. Examples

The data from periodic inspections in three step stress ALTs consists of only the number of
failures in each inspection interval (tij−1, tij ], i = 1, 2, 3, j = 1, 2, · · · ,K(i) where K(i) is the
number of inspection in each stress level. In practice, to find the optimal stress change times
τ∗1 and τ∗2 , the parameters must be approximated by experience, similar data or preliminary
test.

It is assumed that the numbers of inspections on each stress are K(1) = 3,K(2) =
2,K(3) = 1 and the probabilities of failure, pij in inspection intervals (tij−1, tij ], i = 1, 2, 3,
j = 1, 2, · · · ,K(i) are p11 = 0.2, p12 = 0.15, p13 = 0.1 on stress x1, p21 = 0.15, p22 = 0.15
on stress x2, p31 = 0.15 on stress x3, pc = 0.1 and three stress levels are x1 = 0.3, x2 = 0.6,
x3 = 1.0, and model parameters are β0 = 1.0, β1 = −2.0, β2 = −5.0, and the stress change
times are τ1 = 0.56868, τ2 = 0.67539, τc = 0.67766.

The optimal stress change times τ∗1 and τ∗2 minimizing the asymptotic variance,Avar(log θ̂0)
of MLE of logarithm of mean lifetime at the use stress x0 in (3.2) were obtained as τ∗1 =
0.44869 and τ∗2 = 0.67677 by (3.3).
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Now, the MLEs for model parameters β0, β1 and β2 using the optimal stress change times
τ∗1 and τ∗2 based on β0 = 1.0, β1 = −2.0 and β2 = −5.0 are obtained for n = 40, n = 30 and
n = 25 to examine the behavior of MLEs due to the sample size change.

All test units are simultaneously put on stress x1 = 0.3 and inspections are conducted
three times at pre-set times t11 = 0.21226, t12 = 0.40977 and t13 = τ∗1 = 0.44869, but if
all units do not fail before time τ∗1 , the surviving units are subjected to a stronger stress
x2 = 0.6 and also observed at specified times t21 = 0.61178, t22 = τ∗2 = 0.67677, but if
all units do not fail before time τ∗2 , the surviving units are subjected to a stronger stress
x3 = 1.0 and observed until censoring time.

For n = 40, the number of failed test units at each inspection interval (tij−1, tij ], i = 1, 2, 3,
j = 1, 2, · · · ,K(i) were n11 = 4, n12 = 9, n13 = 3 on stress x1, n21 = 17, n22 = 6 on stress
x2, n31 = 1 on stress x3 and the number of censoring units was nc = 0, where t10 = 0,
t20 = τ∗1 and t30 = τ∗2 . By Newton-Raphson method, the MLEs of model parameters β0, β1
and β2 were obtained as β̂0 = 1.14961, β̂1 = −1.96114 and β̂2 = −4.86005.

For n = 30, n11 = 5, n12 = 3, n13 = 4 on stress x1, n21 = 11, n22 = 6 on stress x2, n31 = 1
on stress x3, nc = 0 and the MLEs of model parameters β0, β1 and β2 were β̂0 = 1.12180,
β̂1 = −1.91964 and β̂2 = −4.86936.

For n = 25, n11 = 3, n12 = 8, n13 = 0 on stress x1, n21 = 9, n22 = 3 on stress x2, n31 = 2
on stress x3, nc = 0 and the MLEs of model parameters β0, β1 and β2 were β̂0 = 1.25757,
β̂1 = −2.09730 and β̂2 = −4.85060.

As test units n changes, the behaviors of MLEs of model parameters are not likely to be
remarkable but, the MLEs of β1 and β2 except β0 are closer to the true values of model
parameters as n increases.

The optimum plan is presented and maximum likelihood estimators of model parameters
are obtained by periodic inspection and type I censored data from the step-stress accelerated
life tests. This method will be very helpful in the situation that the intermittent inspection
is the only practicable way of checking the status of test units under a step stress test.
This results will be extended to the research associated with periodic inspection and type I
censoring for multiple step stress accelerated life tests.
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