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ABSTRACT

  Nitride phosphors are now attracting significant attention of material scientists and phosphor engineers, because they promise

red-shifted photoluminescence spectra, small Stokes shift, high quantum efficiency and low thermal degradation. A number of

interesting nitride phosphors have been developed and practiced for producing white light with LED chips. In this paper, the

applications of nitride phosphors in highly reliable wLEDs will be overviewed.  
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1. Introduction

hite light-emitting diodes (wLEDs), known as the

next-generation green and efficient solid state lighting

technology, are now penetrating into our daily life steadily,

replacing incandescent bulbs/fluorescent tubes for general

lighting, cold cathode fluorescent lamps (CCFLs) for back-

lighting in liquid crystal displays (LCDs), as well as Xenon

lamps for headlighting of vehicles.1) Thanks to the advances

in chip, phosphor and packaging technologies, the luminous

efficacy of wLEDs is significantly enhanced. For example,

Cree announced a top-level high-power wLED (CCT = 4408

K) with the luminous efficacy as high as 254 lm/W (350 mA

forward current) recently.2) As one of key materials in white

LED technologies, phosphor plays a key role in the optical

quality of wLEDs such as luminous efficiency, color temper-

ature, color rendition, and the reliability (lifetime).1) There-

fore, to achieve high performance white LEDs, the phosphor

materials should be carefully selected and used.

In the wLED technologies, the emission of LED chips

(blue or UV light) is down-converted into useful green, yel-

low, or red emission colors by phosphors. The phosphors are

thus required to have (i) very strong absorption of the LED

emissions; (ii) high conversion efficiency (quantum effi-

ciency); (iii) small thermal quenching/degradation, and (iv)

high stability against chemical attacks.1)  Although a large

amount of phosphors have been investigated in the litera-

ture, only a very small number of phosphors can be used

practically. These phosphors include yttrium aluminum

garnet (Y
3
Al

5
O

12
:Ce3+),3) orthosilicates (M

2
SiO

4
:Eu2+, M = Ca,

Sr, Ba),4) alkaline earth metal sulfides (MS:Eu2+, M = Ca,

Sr)5) and alkaline earth metal thiogallates (MGa
2
S
4
:Eu, M =

Ca, Sr, Ba).6) But orthosilicate phosphors face the thermal

quenching problem, and the sulfide-based phosphors are

very moisture and thermal sensitive. Some modified

YAG:Ce phosphors with redshifted emission colors also

have the thermal stability problems, and their color points

(chromaticity coordinates) change with increasing tempera-

ture.7) These problems are making the phosphors not suit-

able for producing highly reliable white LEDs, and

thermally-stable phosphors thus need to be developed.  

Covalent nitride materials, including Si
3
N

4
 and sialons,

have long been investigated as structural ceramics due to

their superior thermomechanical properties, high hardness,

and chemical inertness.8) Doping nitrides with rare earth

ions leads to a novel kind of luminescent materials which

show redshifted photoluminescence spectra, abundant

emission colors, high quantum efficiency and small thermal

quenching.1,9) The redshifted excitation and emission spec-

tra are ascribed to strong crystal-field splitting and large

nephelauxetic effect as the activator ions are covalently

bonded to nitrogen at shorted distances. These interesting

photoluminescence properties enable nitride phosphors to

be very suitable for use in wLEDs.  

A number of interesting nitride phosphors have been

investigated, including blue-emitting JEM:Ce,10) Y/La-Si-O-

N:Ce,11,12) AlN:Eu,13) LaSi
3
N

5
:Ce,14) green-emitting β-sialon:Eu,15,16)

SrSi
2
O

2
N

2
:Eu,17) Ca-α-sialon:Yb,18) Ba

3
Si

6
O

12
N

2
:Eu,19) Sr

5
Al

5+x

Si
21-x
N

35-x
O

2+x
:Eu,20)

 
Sr

14
Si

68-s
Al

6+s
O

s
N

106-s
(s~7):Eu,21) Sr

3
Si

13
Al

3

O
2
N

21
:Eu,22) g-alon:Mn,23) yellow-emitting Ca-α-sialon:Eu,24,25)

Li-α-sialon:Eu,26,27) La
3
Si

6
N

11
:Ce,28) CaAlSiN

3
:Ce,29) and red-emitting

CaAlSiN
3
:Eu,30) M

2
Si

5
N

8
:Eu (M = Ca, Sr, Ba),31) CaSiN

2
:Eu/

Ce,32,33) and SrAlSi
4
N

7
:Eu.34,35) Using the nitride phosphors

in wLEDs has also been attempted, leading to two types of

wLEDs – one-phosphor-converted wLED (high efficiency)

and multi-phosphor-converted wLEDs (high color rendi-

tion).1] In this article, white LEDs prepared by using nitride

W
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phosphors will be overviewed. 

2. Nitride-phosphor-based white LEDs

2.1. One-phosphor-converted wLEDs

The first commercialized white LED was produced by

combining the yellow-emitting YAG:Ce with a blue LED

chip.36) This one-phosphor-converted or bichromatic white

LED shows high luminous efficacy and the medium color

rendering index (Ra ~70). Moreover, its color temperature is

usually higher than 4500 K due to the deficiency of red com-

ponent in the YAG:Ce emission spectrum. To achieve warm

white light (i.e., low color temperature) the emission spec-

trum of YAG:Ce needs to be redshifted by partially substi-

tuting Gd for Y.7) However, the Gd-substituted YAG:Ce

shows very larger thermal quenching compared to the

unmodified YAG:Ce, as seen in Fig. 1. It means that the

warm white is achieved by sacrificing the reliability of the

wLED lamps. 

The Eu2+-doped Ca-α-sialon phosphor was reported to be a

promising yellow luminescent material for white LEDs,

which show a broad emission band centered at ~585 nm.24,25)

The orangish yellow emission color of Ca-α-sialon:Eu makes

warm white LEDs come true, as shown in Fig. 2. The corre-

lated color temperature of the LED using Ca-α-sialon:Eu is

2750 K,37) compared to 5500 K of the LED using YAG:Ce

(P46Y3). Furthermore, Ca-α-sialon:Eu exhibits a smaller

thermal quenching than YAG:Ce (See Fig. 1). Sakuma et

al.37) reported that the color point shift of the wLED was

0.006 for Ca-α-sialon:Eu, whereas it was 0.021 for YAG:Ce

(P46Y3) when tested at 200oC, indicative of the much higher

reliability of the device by using nitride phosphors. 

It has been addressed that the emission wavelength of α-

sialon:Eu can be tuned in a broad range by the composition

tailoring. This enables α-sialon:Eu phosphors to produce not

only the warm white light but also the normal white light.

For example, Li-α-sialon:Eu has a shorted emission wave-

length than Ca-α-sialon:Eu when both the m(n) value and

the Eu concentration are fixed.26) Therefore, a white LED

with the correlated color temperature of 6150 K was real-

ized by using the short-wavelength Li-α-sialon:Eu. 

Some other yellow nitride phosphors have also been

reported, such as La
3
Si

6
N

11
:Ce28) and CaAlSiN

3
:Ce.29) The

CaAlSiN
3
:Ce phosphor shows a broad Ce3+ emission band

centered at 570-603 nm and a large full-width at half maxi-

mum (FWHM) of ~135 nm. The combination of CaAlSiN
3
:Ce

with a blue LED chip leads to the white light with the corre-

lated color temperature of 3722 K. Moreover, CaAlSiN
3
:Ce

has a small thermal quenching (See Fig. 1). Similar to

CaAlSiN
3
:Ce, La

3
Si

6
N

11
:Ce also shows an emission band

with two sub-peaks at 543 and 585 nm, and a good thermal

stability. Suehiro et al.38) reported that the wLED using

La
3
Si

6
N

11
:Ce had the color temperature of 2900-3700 K. 

Although nitride yellow phosphors have higher thermal

stability than YAG:Ce, the quantum efficiency of YAG:Ce is

the highest. For example, the external quantum efficiency

of YAG:Ce is as high as 80%, but it is about 60%, 56% and

42% for α-sialon:Eu, CaAlSiN
3
:Ce and La

3
Si

6
N

11
:Ce respec-

tively. Therefore, YAG:Ce is still the most popular yellow

phosphor used in wLEDs, typically in high color tempera-

ture wLEDs. On the other hand, nitride yellow phosphors

have advantages in producing highly reliable wLEDs with

low color temperatures. 

2.2. Multi-phosphor-converted wLEDs

The one-phosphor-converted wLEDs usually have high

luminous efficacy because to some degree their emission

spectra resemble the human eye sensitive curve which has

the maximum at 555 nm. However, the color rendition of

the one-phosphor-converted wLEDs is in the range of Ra =

60-75, which is not acceptable for general lighting. To

improve the color rendering properties of wLEDs, green and

red phosphors instead of a single yellow phosphor are

required to combine with LED chips to produce an emission

spectrum covering the most part of the visible spectral

region.  

The green phosphors investigated earlier are alkaline

earth orthosilicates (M
2
SiO

4
:Eu, M = Ca, Sr, Ba) and

thiogallates (MGa
2
S
4
:Eu, M = Ca, Sr, Ba). But both of these

Fig. 1. Thermal quenching of Ca-α-sialon:Eu, CaAlSiN
3
:Ce

and YAG:Ce phosphors, measured upon the 450 nm
excitation.

Fig. 2. Emission spectra of wLEDs using YAG:Ce and Ca-α-
sialon:Eu
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phosphors have the problems of large thermal quenching

and moisture sensitivity. It is also true for the red-emitting

alkaline earth metal sulfides (MS:Eu, M = Ca, Sr). To find

more reliable green and red phosphors are thus very urgent

and important. Thanks to the large crystal-field splitting

and nephelauxetic effect in covalent nitride host crystals,

some interesting green and red nitride phosphors have been

discovered recently.

The first green nitride phosphor is Eu2+-doped β-sialon.

Fig. 3 is shown the photoluminescence spectra of β-sia-

lon:Eu and (Sr,Ba)
2
SiO

4
:Eu. Compared to the (Sr,Ba)

2
SiO

4
:Eu

green phosphor, β-sialon:Eu shows a much more redshifted

excitation spectrum and a narrower emission band. Fur-

thermore, β-sialon:Eu has the much smaller thermal

quenching than the orthosilicate counterpart(Fig. 4). 

Turning to the red phosphors, M
2
Si

5
N

8
:Eu and CaAlSiN

3
:Eu

are very efficient red-emitting nitride phosphors that have

quantum efficiencies (internal) higher than 90%.1,39) Both

phosphors show the similar photoluminescence spectra (See

in Fig. 5), but CaAlSiN
3
:Eu has better thermal stability

than Sr
2
Si

5
N

8
:Eu.  

High color rendering wLEDs are achieved by combining

blue/UV LED chips with green/red phosphors (two-phos-

phor-converted), green/yellow/red phosphors (three-phos-

phor-converted), or blue/green/yellow/red phosphors (four-

phosphor-converted).1) Table 1 lists the wLEDs examples

prepared by nitride phosphors. It is seen that the color ren-

dering index is significantly enhanced by using the phos-

phor blend, and the luminous efficacy is still much higher

than that of incandescent lamps (15 lm/W). Fig. 6 is shown

the three-phosphor-converted wLEDs using β-sialon:Eu,

Ca-α-sialon:Eu and CaAlSiN
3
:Eu. The color temperature is

tunable by simply adjusting the phosphor blending ratio.

The color rendering index is in the range of 81-88,44) which

is suitable for home illumination. Furthermore, the R9 color

rendering index, reflecting the red color, is as high as 96,

which is usually a minus value for the one-phosphor-con-

verted wLEDs. For achieving higher color rendition, four

phosphors are applied in wLEDs, leading to super-high

color rendering index of 95 (See Table 1).45) 

3. Summary and Outlook

There are numerous phosphors that have been investi-

gated for use in white LEDs, but only a very few number of

them are technologically important. The quantum efficiency

and reliability (thermal/chemical stability) are two of key

Fig. 3. Excitation (a) and emission (b) spectra of green-emit-
ting (Sr,Ba)

2
SiO

4
:Eu and β-sialon:Eu.

Fig. 4 .Thermal quenching of Ba
2
SiO

4
:Eu and β-sialon:Eu.

Fig. 5. Photoluminescence spectra of Sr
2
Si

5
N

8
:Eu and CaAlSiN

3
:Eu.

Fig. 6. Emission spectra of high color rendering wLEDs
using β-sialon:Eu, α-sialon:Eu and CaAlSiN

3
:Eu.
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factors determining the value of phosphors. Due to their

unique crystal structure and covalent chemical bonding,

nitride phosphors show high quantum efficiency, signifi-

cantly redshifted photoluminescence spectra, very small

thermal quenching and high chemical stability, demonstrat-

ing their superior suitability in preparing highly reliable

wLEDs. The experimental results clearly indicate that

nitride phosphors have obvious advantages in producing

warm white LEDs as well as high color rendition wLEDs. 

In fact, not all nitride phosphors exhibit excellent thermal

properties and reliability. With no doubts, this will push us

to develop novel phosphor materials, and clarify the ther-

mal quenching/degradation mechanisms and find solutions

for those nitride phosphors with good photoluminescence

properties but with bad thermal properties. At the same

time, much attention should be paid to use the phosphor(s)

correctly (in combination with the epoxy resin and the pack-

ing configuration), to obtain wLEDs with higher efficiency

and reliability. 
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