DOI QR코드

DOI QR Code

Reactive Synthesis of ZrB2-based Ultra High Temperature Ceramics

  • Liu, Hai-Tao (State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics) ;
  • Zhang, Guo-Jun (State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics)
  • Received : 2012.05.22
  • Accepted : 2012.06.28
  • Published : 2012.07.31

Abstract

Reactive processing, such as reactive hot pressing (RHP) and reactive spark plasma sintering (R-SPS), is effective densification method to prepare $ZrB_2$-based ultra high temperature ceramics (UHTCs). The present paper reviewed some typical reactive processing of $ZrB_2$-based UHTCs. All the reactions from the starting materials in the reactive processing are thermodynamically favorable, which generate enough energy and driving force for the densification of the final products under a relatively low temperature. Besides, compared with non-reactive processing, anisotropic $ZrB_2$ grains, such as $ZrB_2$ platelets, can only be obtained in the reactive processing, resulting in an improvement of the mechanical properties.

Keywords

References

  1. F. Monteverde, A. Bellosi, and S. Guicciardi, "Processing and Properties of Zirconium Diboride-based Composites," J. Eur. Ceram. Soc., 22 279-88 (2002). https://doi.org/10.1016/S0955-2219(01)00284-9
  2. M-M. Opeka, I-G. Talmy, and J-A. Zaykoski, "Oxidationbased Materials Selection for 2000 Degrees C Plus Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience," J. Mater. Sci., 39 5887-904 (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77
  3. M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman, and S. Johnson, "Processing Properties and Arc Jet Oxidation of Hafnium Diboride/silicon Carbide Ultra High Temperature Ceramics," J. Mater. Sci., 39 5925-37 (2004). https://doi.org/10.1023/B:JMSC.0000041689.90456.af
  4. A. Bellosi, F. Monteverde, and D. Sciti, "Fast Densification of Ultra-high-temperature Ceramics by sPark Plasma Sintering," Int. J. Appl. Ceram. Technol., 3 32-40 (2006). https://doi.org/10.1111/j.1744-7402.2006.02060.x
  5. W-G. Fahrenholtz, G-E. Hilmas, I-G. Talmy, and J-A. Zaykoski, "Refractory Diborides of Zirconium and Hafnium," J. Am. Ceram. Soc., 90 1347-64 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x
  6. S-Q. Guo, "Densification of $ZrB_2$-based Composites and Their Mechanical and Physical Properties: A Review," J. Eur. Ceram. Soc., 29 995-1011 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  7. G-J. Zhang, J. Zou, D-W. Ni, H-T. Liu, and Y-M. Kan, "Boride Ceramics: Densification Microstructure Tailoring and Properties Improvement," J. Inorg. Mater., 27 225-33 (2012). https://doi.org/10.3724/SP.J.1077.2012.00225
  8. G-J. Zhang, Z-Y. Deng, N. Kondo, J-F. Yang, and T. Ohji, "Reactive Hot Pressing of $ZrB_2$-SiC Composites," J. Am. Ceram. Soc., 83 2330-2 (2000).
  9. F. Monteverde, S. Guicciardi, and A. Bellosi, "Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics," Mater. Sci. Eng. A., 346 310-9 (2003). https://doi.org/10.1016/S0921-5093(02)00520-8
  10. D. Sciti, S. Guicciardi, A. Bellosi, and G. Pezzotti, "Properties of A Pressureless-sintered $ZrB_2-MoSi_2$ Ceramic Composite," J. Am. Ceram. Soc., 89 2320-2 (2006).
  11. A-L. Chamberlain, W-G. Fahrenholtz, G-E. Hilmas, and DT. Ellerby, "High-strength Zirconium Diboride-based Ceramics," J. Am. Ceram. Soc., 87 1170-2 (2004). https://doi.org/10.1111/j.1551-2916.2004.01170.x
  12. S-C. Zhang, G-E. Hilmas, and W-G. Fahrenholtz, "Pressureless Densification of Zirconium Diboride with Boron Carbide Additions," J. Am. Ceram. Soc., 89 1544-50 (2006). https://doi.org/10.1111/j.1551-2916.2006.00949.x
  13. J. Zou, G-J. Zhang, Y-M. Kan, and P-L. Wang, "Pressureless Densification of $ZrB_2$-SiC Composites with Vanadium Carbide," Scr. Mater., 59 309-12 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.029
  14. J. Zou, G-J. Zhang, and Y-M. Kan, "Formation of Tough Interlocking Microstructure in $ZrB_2$-SiC-based Ultrahightemperature Ceramics by Pressureless Sintering," J. Mater. Res., 24 2428-34 (2009). https://doi.org/10.1557/jmr.2009.0274
  15. L. Silvestroni and D. Sciti, "Effects of $MoSi_2$ Additions on the Properties of Hf- and $Zr-B_2 $Composites Produced by Pressureless Sintering," Scr. Mater., 57 165-68 (2007). https://doi.org/10.1016/j.scriptamat.2007.02.040
  16. W-G. Fahrenholtz, G-E. Hilmas, S-C. Zhang, and S. Zhu, "Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects," J. Am. Ceram. Soc., 91 1398-404 (2008). https://doi.org/10.1111/j.1551-2916.2007.02169.x
  17. D. Sciti, F. Monteverde, S. Guicciardi, G. Pezzotti, and A. Bellosi, "Microstructure and Mechanical Properties of $ZrB_2-MoSi_2$ Ceramic Composites Produced by Different Sintering Techniques," Mater. Sci. Eng. A., 434 303-9 (2006). https://doi.org/10.1016/j.msea.2006.06.112
  18. J. Zou, G-J. Zhang, Y-M. Kan, and P-L. Wang, "Hotpressed $ZrB_2$-SiC Ceramics with VC Addition: Chemical Reactions Microstructures and Mechanical Properties," J. Am. Ceram. Soc., 92 2838-46 (2009). https://doi.org/10.1111/j.1551-2916.2009.03293.x
  19. J-W. Zimmermann, G-E. Hilmas, W-G. Fahrenholtz, F. Monteverde, and A. Bellosi, "Fabrication and Properties of Reactively Hot Pressed $ZrB_2$-SiC Ceramics," J. Eur. Ceram. Soc., 27 2729-36 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.074
  20. W-M. Guo, X-J. Zhou, G-J. Zhang, Y-M. Kan, Y-G. Li, and P-L. Wang, "Effect of Si and Zr Additions on Oxidation Resistance of Hot-pressed $ZrB_2$-SiC Composites with Polycarbosilane as a Precursor at 1500 Degrees C," J. Alloy. Compd., 471 153-6 (2009). https://doi.org/10.1016/j.jallcom.2008.02.108
  21. W-W. Wu, G-J. Zhang, Y-M. Kan, P-L. Wang, K. Vanmeensel, J. Vleugels, and O. VanderBiest, "Synthesis and Microstructural Features of $ZrB_2$-SiC-based Composites by Reactive Spark Plasma Sintering and Reactive Hot Pressing," Scr. Mater., 57 317-20 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.025
  22. A. Balbo and D. Sciti, "Spark Plasma Sintering and Hot Pressing of $ZrB_2-MoSi_2$ Ultra-high-temperature Ceramics," Mater. Sci. Eng. A., 475 108-12 (2008). https://doi.org/10.1016/j.msea.2007.01.164
  23. D. Sciti and M. Nygren, "Spark Plasma Sintering of Ultra Refractory Compounds," J. Mater. Sci., 43 6414-21 (2008) https://doi.org/10.1007/s10853-008-2718-7
  24. D. Sciti, L. Silvestroni, and M. Nygren, "Spark Plasma Sintering of Zr- and Hf-borides with Decreasing Amounts of $MoSi_2$ as Sintering Aid," J. Eur. Ceram. Soc., 28 1287-96 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.043
  25. G-J. Zhang, M. ando, J-F. Yang, T. Ohji, and S. Kanzaki, "Boron Carbide and Nitride as Reactants for in Situ Synthesis of Boride-containing Ceramic Composites," J. Eur. Ceram. Soc., 24 171-78 (2004). https://doi.org/10.1016/S0955-2219(03)00607-1
  26. W-W. Wu, G-J. Zhang, Y-M. Kan, and P-L. Wang, "Reactive Hot Pressing of $ZrB_2$-SiC-ZrC Ultra High-temperature Ceramics at 1800 Degrees C," J. Am. Ceram. Soc., 89 2967-9 (2006).
  27. W-W. Wu, G-J. Zhang, Y-M. Kan, and P-L. Wang, "Reactive Hot Pressing of $ZrB_2$-SiC-ZrC Composites at 1600 degrees C," J. Am. Ceram. Soc., 91 2501-8 (2008). https://doi.org/10.1111/j.1551-2916.2008.02507.x
  28. W-W. Wu, Z. Wang, G-J. Zhang, Y-M. Kan, and P-L. Wang, "$ZrB_2-MoSi_2$ Composites Toughened by Elongated $ZrB_2$ Grains Via Reactive Hot Pressing" Scr. Mater., 61 316-9 (2009). https://doi.org/10.1016/j.scriptamat.2009.04.013
  29. W-G. Fahrenholtz, "Reactive Processing in Ceramic-based Systems," Int. J. Appl. Ceram. Technol., 3 1-12 (2006). https://doi.org/10.1111/j.1744-7402.2006.02059.x
  30. A-L. Chamberlain, W-G. Fahrenholtz, and G-E. Hilmas, "Low-temperature Densification of Zirconium Diboride Ceramics by Reactive Hot Pressing," J. Am. Ceram. Soc., 89 3638-45 (2006). https://doi.org/10.1111/j.1551-2916.2006.01299.x
  31. A-L. Chamberlain, W-G. Fahrenholtz, and G-E. Hilmas, "Reactive Hot Pressing of Zirconium Diboride," J. Eur. Ceram. Soc., 29 3401-8 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.07.006
  32. I-G. Talmy, J-A. Zaykoski, and M-A. Opeka, "Properties of Ceramics in the $ZrB_2$/ZrC/SiC System Prepared by Reactive Processing. In: Bray D, Editors." pp. 105-12, 22nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A, Westerville: Am. Ceram. Soc., 1998.
  33. S. Ran, O. VanderBiest, and J. Vleugels, "$ZrB_2$-SiC Composites Prepared by Reactive Pulsed Electric Current Sintering" J. Eur. Ceram. Soc., 30 2633-42 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.05.012
  34. Q. Qu, X-H. Zhang, S-H. Meng, W-B. Han, C-Q. Hong, and H-C. Han, "Reactive Hot Pressing and Sintering Characterization of $ZrB_2$-SiC-ZrC Composites," Mater. Sci. Eng. A., 491 117-23 (2008). https://doi.org/10.1016/j.msea.2008.01.053
  35. X-H. Zhang, Q. Qu, J-C. Han, W-B. Han, and C-Q. Hong, "Microstructural Features and Mechanical Properties of $ZrB_2$-SiC-ZrC Composites Fabricated by Hot Pressing and Reactive Hot Pressing," Scr. Mater., 59 753-6 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.004
  36. Y. Zhao, L-J. Wang, G-J. Zhang, W. Jiang, and L-D. Chen, "Effect of Holding Time and Pressure on Properties of $ZrB_2$-SiC Composite Fabricated by the Spark Plasma Sintering Reactive Synthesis Method," Int. J. Refract Met. Hard. Mater, 27 177-80 (2009). https://doi.org/10.1016/j.ijrmhm.2008.02.003
  37. Y. Zhao, L-J. Wang, G-J. Zhang, W. Jiang, and L-D. Chen, "Preparation and Microstructure of a $ZrB_2$-SiC Composite Fabricated by the Spark Plasma Sintering-reactive Synthesis (SPS-RS) Method," J. Am. Ceram. Soc., 90 4040-2 (2007).
  38. F. Monteverde, "Progress in the Fabrication of Ultra-high-temperature Ceramics: 'in situ' Synthesis Microstructure and Properties of a Reactive Hot-pressed $HfB_2$-SiC Composite," Compos. Sci. Technol., 65 1869-79 (2005). https://doi.org/10.1016/j.compscitech.2005.04.003
  39. G-J. Zhang, "Preparation of $TiB_2-TiC_{0.5}N_{0.5}$ Ceramic Composite by Reactive Hot-pressing and its Microstructure," Ceram. Int., 21 29-31 (1995). https://doi.org/10.1016/0272-8842(95)93268-8
  40. G-J. Zhang, Z-Z. Jin, and X-M. Yue, "TiN-$TiB_2$ Composites Prepared by Reactive Hot-pressing and Effects of Ni Addition," J. Am. Ceram. Soc., 78 2831-3 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08061.x
  41. G-J. Zhang, Z-Z. Jin, and X-M. Yue, "Reaction Synthesis of $TiB_2$-SiC Composites from $TiH_2-Si-B_4C$," Mater. Lett., 25 97-100 (1995). https://doi.org/10.1016/0167-577X(95)00159-X
  42. G-J. Zhang, Z-Z. Jin, and X-M. Yur, "A Multilevel Ceramic Composite of $TiB_2-Ti_{0.9}W_{0.1}C-SiC$ Prepared by In Situ Reactive Hot Pressing," Mater. Lett., 28 1-5 (1996). https://doi.org/10.1016/0167-577X(96)00031-6
  43. G-J. Zhang, X-M. Yue, and Z-Z. Jin, "Preparation and Microstructure of $TiB_2$-TiC-SiC Platelet-reinforced Ceramics by Reactive Hot-pressing," J. Eur. Ceram. Soc., 16 1145-8 (1996). https://doi.org/10.1016/0955-2219(96)00034-9
  44. G-J. Zhang, X-M. Yue, Z-Z. Jin, and J-Y. Dai, "In-situ Synthesized $TiB_2$ Toughened SiC," J. Eur. Ceram. Soc., 16 409-12 (1996). https://doi.org/10.1016/0955-2219(95)00116-6
  45. G-J. Zhang, Z-Z. Jin, and X-M. Yue, "$TiB_2$-Ti(CN)-Sic Composites Prepared by Reactive Hot Pressing," J. Mater. Sci. Lett., 15 26-8 (1996). https://doi.org/10.1007/BF01855600
  46. W-B. Johnson, T-D. Claar, and G-H. Schiroky, "Preparation and Processing of Platelet-reinforced Ceramics by the Directed Reaction of Zirconium With Boron Carbide," Ceram. Eng. Sci. Proceedings, 10 588-98 (1989).
  47. T-D. Claar, W-B. Johnson, C-A., andersson, and G-H. Schiroky, "Microsturcture and Properties of Platelet-reinforced Ceramics Formed by the Directed Reaction of Zirconium With Boron Carbide," Ceram. Eng. Sci. Proceedings, 10 599-609 (1989).
  48. W-B. Johnson, A-S. Nagelberg, and E. Breval, "Kinetics of Formation of a Platelet-reinforced Ceramic Composite Prepared by the Directed Reaction of Zirconium with Boroncarbide," J. Am. Ceram. Soc., 74 2093-101 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb08265.x
  49. H-T. Liu, W-W. Wu, J. Zou, D-W. Ni, Y-M. Kan, and G-J. Zhang, "In Situ Synthesis of $ZrB_2-MoSi_2$ Platelet Composites: Reactive Hot Pressing Process Microstructure and Mechanical Properties," Ceram. Int., 38 [6] 4751-60 (2012), doi:10.1016/j.ceramint.2012.02.061.
  50. H-T. Liu, J. Zou, D-W. Ni, W-W. Wu, Y-M. Kan, and G-J. Zhang, "Textured and Platelet- Reinforced $ZrB_2$-based ultrahigh-temperature Ceramics," Scr. Mater., 65 37-40 (2011). https://doi.org/10.1016/j.scriptamat.2011.03.016
  51. H-T. Liu, J. Zou, D-W. Ni, J-X. Liu, and G-J. Zhang, "Anisotropy Oxidation of Textured $ZrB_2-MoSi_2$ Ceramics," J. Eur. Ceram. Soc., 32 [12] 3469-78 (2012), doi:10.1016/j.jeurceramsoc.2012.03.036.

Cited by

  1. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials vol.6, pp.5, 2013, https://doi.org/10.3390/ma6051566
  2. ZrB2/HfB2-SiC Ceramics Modified by Refractory Carbides: An Overview vol.64, pp.14, 2012, https://doi.org/10.1134/s0036023619140079
  3. Ultra-high temperature ceramics developments for hypersonic applications vol.11, pp.3, 2012, https://doi.org/10.1007/s13272-020-00445-y