DOI QR코드

DOI QR Code

Analysis of Thermal Imidization Kinetics of 6FDA-BAPP Polyimide in Relation with Solvent Evaporation

6FDA-BAPP 폴리이미드 열축합 반응에서의 잔류용매에 따른 이미드화거동 연구

  • Lee, Eun-Young (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Hwang, Tae-Seon (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Nam, Jae-Do (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • 이은영 (성균관대학교 고분자공학과) ;
  • 황태선 (성균관대학교 고분자공학과) ;
  • 남재도 (성균관대학교 고분자공학과)
  • Received : 2011.12.20
  • Accepted : 2012.02.20
  • Published : 2012.07.25

Abstract

A poly(amic acid) (PAA) was prepared by reaction of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluropropane (BAPP) in N,N-dimethylacetamide (DMAc). The cast films of the synthesized PAA were thermally treated at different temperatures to create polyimide (PI) films. The heat treatment temperature varied between 80 and $230^{\circ}C$ to investigate the imidization index in relation with the solvent evaporation rates. The progress of PAA imidization was examined using a thermogravimetric analyzer (TGA) and a Fourier transform infrared spectroscope (FTIR) at various time and temperature. The experimental results showed that the imidization index was fast at the initial stage in the presence of solvent, DMAc, reaching the final imidization. When the imidization temperature is high over $200^{\circ}C$, the imidization index decreased because the solvent was evaporated too fast.

폴리아믹산(poly(amic acid), PAA)은 불소치환 단량체인 4,4'-(hexafluoroisopropylidene)diphthalic anhydride(6FDA)와 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluropropane(BAPP)의 조성으로 N,N'-dimethylacetamide(DMAc) 용매에서 반응을 하여 얻어졌으며, 폴리이미드(polyimide, PI) 필름은 PAA을 각각 다른 온도에서 열처리하여 얻었다. 제조된 필름을 얻기 위해 $80-230^{\circ}C$까지 열처리를 하였으며, 용제 증발에 따른 이미드화도 변화를 알아보기 위해서 폴리아믹산 용액을 얻은 후 열중량 분석기(thermogravimetric analysis, TGA)를 통하여 시간과 온도에 따른 용제 증발 정도를 측정하였다. 이에 따른 이미드화 지수는 적외선 분광분석기(fourier transform infrared spectroscopy, FTIR) 스펙트럼을 통해 확인하였다. 시간과 온도에 따른 이미드화도를 통해 용매가 빠르게 증발하지만 용매가 잔류하고 있는 반응의 초기에 이미드화가 빠르게 일어나는 것을 확인하였고, 시간이 흘러 용매의 증발 정도가 줄어들고, 잔류용매가 사라지는 시점에서의 이미드화 지수는 일정하게 나타나는 것을 확인하였다. 이미드화는 온도가 증가함에 따라 진행되나 반응 온도가 $200^{\circ}C$ 이상으로 과도하게 높은 경우에는 용매가 남아 있지 않아 반응시간을 증가시켜도 이미드화 지수가 오히려 감소하는 현상을 보였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. C.-L. Chung and S.-H. Hsiao, Polymer, 49, 2476 (2008). https://doi.org/10.1016/j.polymer.2008.03.047
  2. G. P. Wang, T. C. Chang, Y. S. Hong, and Y. S. Chiu, Polymer, 43, 2191 (2002). https://doi.org/10.1016/S0032-3861(02)00016-2
  3. J.-H. Chang, K. M. Park, S.-M. Lee, and J. B. Oh, J. Polym. Sci. Part B: Polym. Phys., 38, 2537 (2000). https://doi.org/10.1002/1099-0488(20001001)38:19<2537::AID-POLB50>3.0.CO;2-V
  4. K. S. Yang, D. D. Edie, D. Y. Lim, Y. M. Kim, and Y. O. Choi, Carbon, 41, 2039 (2003). https://doi.org/10.1016/S0008-6223(03)00174-X
  5. H.-W. Wang, R.-X. Dong, H.-C. Chu, K.-C. Chang, and W.-C. Lee, Mater. Chem. Phys., 94, 42 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.037
  6. W. B. Jang, D. Y. Shin, S. H. Choi, S. G. Park, and H. S. Han, Polymer, 48, 2130 (2007). https://doi.org/10.1016/j.polymer.2007.02.023
  7. J. He, K. Horie, R. Yokota, and F. He, Polymer, 42, 4063 (2001). https://doi.org/10.1016/S0032-3861(00)00803-X
  8. I. H Choi and J. H. Chang, Polym. Adv. Technol., 20, 1 (2009). https://doi.org/10.1002/pat.1229
  9. Y. H. So and J. P. Heeschen, J. Org. Chem., 62, 3552 (1997). https://doi.org/10.1021/jo960441u
  10. J. H. Chang, C.-H. Ju, and J.-C. Kim, J. Appl. Polym. Sci., 106, 4192 (2007). https://doi.org/10.1002/app.26987
  11. Z. Ge, L. Fan, and S. Yang, Eur. Polym. J., 44, 1252 (2008). https://doi.org/10.1016/j.eurpolymj.2008.01.041
  12. H. G. Boston, A. K. S. Clair, and J. R. Pratt, J. Appl. Polym. Sci., 46, 243 (1992). https://doi.org/10.1002/app.1992.070460205
  13. H.-S. Jin and J.-H. Chang, J. Appl. Polym. Sci., 107, 109 (2008). https://doi.org/10.1002/app.26173
  14. M.-H. Park, S.-J. Yang, W. B. Jang, and H. S. Han, Korean Chem. Eng. Res., 42, 305 (2005).
  15. L. A. Laius, M. I. Bessonov, Ye. V. Kallistova, N. A. Adrova, and F. S. Florinskii, Vysokomol. Soyed., 10, 2185 (1967).
  16. M. Marek, Jr., P. Schmidt, and B. Schneider, Makromol. Chem., 191, 2631 (1990). https://doi.org/10.1002/macp.1990.021911111
  17. M.-J. Brekner and C. Feger, J. Polym. Sci. Part A: Polym. Chem., 25, 2005 (1987). https://doi.org/10.1002/pola.1987.080250720
  18. P. D. Frayer, "Synthesis, Characterization, and Applications", in Polyimides, K. L. Mittal, Editor, Mittal, Plenum Press, New York, Vol 1, p 273 (1984).
  19. V. Ratta, Ph.D. Thesis, Virginia Polytechnic Institute and State University (1999).
  20. W. B. Jang, D. Y. Shin, S. G. Choi, S. G. Park, and H. S. Han, Polymer, 48, 2130 (2007). https://doi.org/10.1016/j.polymer.2007.02.023
  21. T. Matsumoto and T. Kurosaki, Macromolecules, 30, 993 (1997). https://doi.org/10.1021/ma961307e
  22. C.-P. Yang and Y. Y. Su, Polymer, 46, 5797 (2005). https://doi.org/10.1016/j.polymer.2005.04.076
  23. T. Matsumoto, Macromolecules, 32, 4933 (1999). https://doi.org/10.1021/ma9903862
  24. I. H. Choi and J. H. Chang, Polymer(Korea), 34, 480 (2010).
  25. I. H. Choi and J. H. Chang, Polymer(Korea), 34, 391 (2010).
  26. I. H. Choi and J. H. Chang, Polym. Adv. Technol., 20, 1 (2009). https://doi.org/10.1002/pat.1229
  27. X. Y. Jing, S. D. Chen, and E. Y. Yao, A Practical Guide to Infrared System, Tianjin Science and Technology Press, p 26 (1992).
  28. M. B. Saeed and M.-S. Zhan, Eur. Polym. J., 42, 1844 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.004

Cited by

  1. Synthesis of Poly Imide/α’ω’-di Poly Acrylamide (3-Mercaptopropyl) Trimethoxysilane Terminated Copolymer vol.26, pp.9, 2016, https://doi.org/10.3740/MRSK.2016.26.9.478