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Abstract. We investigate in this paper rings containing a non-essential nil− injective

maximal left ideal. We show that if R is a left MC2 ring containing a non-essential nil−
injective maximal left ideal, then R is a left nil− injective ring. Using this result, some

known results are extended.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all
modules are unitary. For any nonempty subset X of a ring R, r(X) = rR(X) and
l(X) = lR(X) denote the right annihilators of X and the left annihilators of X,
respectively. We write J(R), P (R), Zl(R) (Zr(R)), N(R), U(R), E(R), Soc(RR)
and Soc(RR) for the Jacobson radical, the prime radical, the left (right) singular
ideal, the set of all nilpotent elements, the set of all invertible elements, the set
of all idempotent elements, the left socle and the right socle of R, respectively. It
is well-known that every maximal left ideal of a ring R is injective if and only if
R is semisimple Artinian. Osofsky [8] showed that if R is a left self-injective left
hereditary ring, then R is semisimple Artinian. Based on these results, Yue chi
ming [19] proposed the following question: If R is a left hereditary ring containing
an injective maximal left ideal, is R semisimple Artinian? However, Zhang and Du
[20] constructed a counterexample to settle in the negative, and then they proved
that a ring R is semiprime left hereditary containing an injective maximal left ideal
if and only if R is semisimple Artinian. As the same direction to Zhang and Du, Kim
[4] showed that if R is a semiprime ring containing a finitely generated p− injective
maximal left ideal, then R is a left p− injective ring. And Kim and Baik [3] showed
that If R is a left idempotent reflexive ring containing an injective maximal left
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ideal, then R is a left self-injective.

We investigate in this paper rings containing a non-essential nil− injective max-
imal left ideal. Using left MC2 rings, we show that if R is a left MC2 ring contain-
ing a non-essential nil− injective maximal left ideal, then R is a left nil− injective
ring. As a byproduct of this result, we obtain a new characterization of regular left
self-injective rings with nonzero socle. This characterization is then used to prove
that left MC2 left HI−rings are semisimple Artinian. Consequently we extend
nontrivially some results appeared in [3], [4] and [20].

An element k of R is called left minimal if Rk is a minimal left ideal of R. An
element e of R is called left minimal idempotent if e2 = e is left minimal. Similarly,
the notion of right minimal (idempotent) element can be defined. We denoteMl(R),
MEl(R), Mr(R) and MEr(R) for the set of left minimal elements, the set of left
minimal idempotent elements, the set of right minimal elements and the set of right
minimal idempotent elements of R, respectively. A ring R is called left MC2 if
every minimal left ideal which is isomorphic to a summand of RR is a summand.
Left MC2 rings were initiated by Nicholson and Yousif in [6], related to the left
mininjective rings. Where a ring R is called left mininjective if rl(k) = kR for
every k ∈ Ml(R). A ring R is said to be left minsymmetric [6] if Ml(R) ⊆ Mr(R),
and R is left universally mininjective [6] if for any k ∈ Ml(R), Rk is a summand
of RR. According to [6], left universally mininjective =⇒ left mininjective =⇒ left
minsymmetric =⇒ left MC2 and the converse are not true.

A ring R is called left min-abel [12] if for each e ∈ MEl(R), e is left semicentral
in R, and R is said to be strongly left min-abel [12] if every element of MEl(R)
is contained in the central of R. [12, Theorem 1.8] showed that R is strongly left
min-abel if and only if R is left MC2 left min-abel.

A ring R is called reflexive [5] if aRb = 0 implies bRa = 0 for all a, b ∈ R, and
R is said to be left idempotent reflexive [3] if aRe = 0 implies eRa = 0 for all a ∈ R
and e ∈ E(R). Clearly, semiprime =⇒ reflexive =⇒ left idempotent reflexive =⇒
left MC2. But the converse are not true.

R is called reduced if it contains no nonzero nilpotent element. Clearly, reduced
=⇒ semiprime =⇒ left universally mininjective.

Recall that a ring R is left NPP [14] if for any a ∈ N(R), RRa is projective,
and R is said to be n−regular if a ∈ aRa for all a ∈ N(R). A left R−module M is
called left nil−injective [14] if for any a ∈ N(R) and every left R−homomorphism
from Ra to M extends to one from RR to M . If RR is nil−injective, then R is
called left nil−injective ring. According to [14] R is a n−regular ring if and only if
every cyclic left R−module is nil−injective if and only if R is a left nil−injective
left NPP ring.

2. Main results

We start with the following lemma.

Lemma 2.1. (1) The following conditions are equivalent for a left R−module M :
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(a) M is nil−injective;
(b) For any a ∈ N(R), rM lR(a) = aM ;
(c) For any a ∈ N(R) and m ∈ M , lR(a)m = 0 implies m ∈ aM ;
(d) For any a ∈ N(R) and m ∈ M , if m /∈ aM , then there exists c ∈ R such

that ca = 0 and cm ̸= 0.
(2) Let M1 and M2 be left R−modules. Then M1 and M2 are nil− injective if and
only if M1 ⊕M2 is nil−injective.

Proof. It is routine. 2

Lemma 2.2. Let R be a ring and e ∈ MEl(R). If e is central in R, then RRe is
injective.

Proof. Let e ∈ MEl(R) be contained in the central of R and I a left ideal of R with
a nonzero R−homomorphism f : I −→ Re. Since RRe is projective, I = kerf ⊕ V ,
where V ∼= Re. Let σ be the isomorphism and let 0 ̸= v ∈ V such that σ(v) = e,
then V = Rv and v = ev. Since e is central in R, v = ev = ve, which implies
Re = Rv = V . Therefore I = kerf ⊕ Re. Now for any x ∈ I, let x = y + z,
where y ∈ kerf and z = ze ∈ Re. Since yf(e) = f(ye) = f(ey) = ef(y) = 0,
f(x) = f(y) + f(z) = f(z) = f(ze) = zf(e) = yf(e) + zf(e) = (y+ z)f(e) = xf(e).
Hence RRe is injective. 2

[3, Proposition 5] showed that if R is a left idempotent reflexive ring containing
an injective maximal left ideal, then R is a left self-injective ring. [4, Theorem
2] showed that if R is a semiprime ring containing a finitely generated p−injective
maximal left ideal, then R is a left p−injective ring. We have the following theorem.

Theorem 2.3. Let R be a left MC2 ring. If R contains a non-essential
nil−injective maximal left ideal M , then R is a left nil−injective ring.

Proof. Let M be a non-essential nil−injective maximal left ideal of R. Then
R = M ⊕ L, where L = Re is a minimal left ideal of R and M = R(1 − e). If
ML = 0, then M = l(L) since M is maximal. So M is an ideal of R. Since R is
left MC2 and (1 − e)Re = ML = 0, by [13, Theorem 1.3], eR(1 − e) = 0. Hence
e is a central idempotent of R. By Lemma 2.2, RRe is injective. Now suppose
that ML ̸= 0. Then there exists u ∈ L such that Mu ̸= 0, whence L = Mu.
Let f : M −→ L be the map defined by f(x) = xu for each x ∈ M . Since f is
an epimorphism and RL is projective, M ∼= kerf ⊕ L. Hence, by Lemma 2.1(2),

RL is nil−injective. In any case, RL is nil−injective. By Lemma 2.1(2), R is left
nil−injective. 2

According to [15], a ring R is called n−regular if for any a ∈ N(R), a = aba for
some b ∈ R and a right R− module M is said to be Nflat if for any a ∈ N(R), the
map 1M ⊗ i : M ⊗R Ra −→ M ⊗R R is monic, where i : Ra ↪→ R is the inclusion
map. [15, Theorem 4.7] showed that R is n−regular if and only if every cyclic right
R−module is Nflat. R is said to be abelian if every idempotent element of R is
central, and R is said to be semiabelian [21] if every idempotent element of R is
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either left semicentral or right semicentral. A ring R is called quasi-normal [16]
if for any e ∈ E(R), eR(1 − e)Re = 0. A ring R is called left min-abel if every
element of MEl(R) is left semicentral. [16, Theorem 2.5] showed that quasi-normal
rings are left min-abel. [16, Theorem 2.6] showed that R is abelian if and only if
R is quasi-normal left idempotent reflexive. Clearly, abelian =⇒ semiabelian =⇒
quasi-normal.

Theorem 2.4. (1) A ring R is n− regular if and only if every cyclic singular right
R− module is Nflat.

(2) The following conditions are equivalent for a ring R.

(a) R is reduced.

(b) R is n− regular and quasi-normal.

(c) R is left NPP and for any a ∈ R, al(a) = 0.

(3) Let M be a maximal left ideal of R which is also an ideal. Then R/M is Nflat
as right R− module if and only if R/M is nil− injective as left R− module.

Proof. (1) The necessity is evident by [15, Theorem 4.7].

The sufficiency part: Let a ∈ N(R) and T be a complement right ideal such
that aR ⊕ T is essential in R. Then R/(aR ⊕ T ) is Nflat by hypothesis. Since
a ∈ N(R) and a ∈ aR⊕T , a = (ac+ t)a for some c ∈ R and t ∈ T by [15, Theorem
4.6]. Since ta = a− aca ∈ T ∩ aR = 0, a = aca. Hence R is n− regular.

(2) (a) =⇒ (b) and (a) =⇒ (c) are trivial.

(b) =⇒ (a) Let a ∈ R such that a2 = 0. Then a = aba for some b ∈ R. Let
e = ba, then e ∈ E(R), a = ae, ea = 0 and Ra = Re. Therefore eRe = eRa =
eR(1 − e)ae ⊆ eR(1 − e)Re. Since R is quasi-normal, eR(1 − e)Re = 0, which
implies eRe = 0. Hence e = 0 and so a = 0.

(c) =⇒ (a) Let a ∈ R with a2 = 0. Since R is left NPP , l(a) = Re for some
e ∈ E(R). Hence a = ae ∈ aRe because a ∈ l(a). By hypothesis, aRe = al(a) = 0,
which implies a = 0

(3) Assume that R/M is Nflat right R− module and a ∈ N(R) with a nonzero
R− homomorphism f : Ra −→ R/M . If a ∈ M , then by [15, Theorem 4.6], a = ma
for some m ∈ M . Hence f(a) = f(ma) = mf(a) = 0 because M is an ideal of R.
This is impossible because f ̸= 0. So a /∈ M , which implies Ra + M = R. Since
R/M is division ring, aR +M = R. Let ab +m = 1 for some b ∈ R and m ∈ M .
Hence abf(a) = (1 − m)f(a) = f(a) − mf(a) = f(a) because mf(a) = 0. This
shows that R/M is nil− injective left R− module.

Conversely, assume that R/M is nil− injective left R− module and a ∈ N(R).
Then Ma ⊆ M ∩ Ra. Now let x = ca ∈ M ∩ Ra where c ∈ R. If l(a) ⫅̸ M ,
then l(a) + M = R. Let 1 = y + m, where y ∈ l(a) and m ∈ M . So a = ma
and x = ca = cma ∈ Ma. If l(a) ⊆ M , then the left R− homomorphism f :
Ra −→ R/M defined by f(ra) = r + M, r ∈ R can be extended to R −→ R/M .
which implies there exists b ∈ R such that 1 − ab ∈ M . Since cab = xb ∈ M ,
c = c− cab+ cab = c(1− ab) + cab ∈ M . Therefore x = ca ∈ Ma. In any case, we
obtain M ∩Ra = Ma. By [15, Theorem 4.6], R/M is Nflat right R− module. 2
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As an application of Theorem 2.3, we have the following result.

Theorem 2.5. The following conditions are equivalent for a ring R:
(1) R is a n−regular ring with nonzero left socle.
(2) R is a left MC2 left NPP ring containing a non-essential nil− injective

maximal left ideal.
(3) R is a left idempotent reflexive left NPP ring containing a non-essential

nil−injective maximal left ideal.
(4) R is a reflexive left NPP ring containing a non-essential nil−injective max-

imal left ideal.
(5) R is a semiprime left NPP ring containing a non-essential nil−injective

maximal left ideal.
(6) R is a left universally mininjective left NPP ring containing a non-essential

nil−injective maximal left ideal.
(7) R is a left mininjective left NPP ring containing a non-essential nil−injective

maximal left ideal.
(8) R is a left minsymmetric left NPP ring containing a non-essential

nil−injective maximal left ideal.
(9) Soc(RR) ⊆ Soc(RR) and R is a left NPP ring containing a non-essential

nil−injective maximal left ideal.
(10) R is a left NPP ring containing a non-essential nil−injective maximal left

ideal which is n−regular.

Proof. (5) =⇒ (4) =⇒ (3) =⇒ (2); (5) =⇒ (6) =⇒ (7) =⇒ (8) =⇒ (9) and
(1) =⇒ (10) are trivial.

(9) =⇒ (2) Let k ∈ PMl(R). Then l(k) = l(e) for some e ∈ MEl(R). If
(Rk)2 = 0, then RkR ⊆ l(k). Let T be a right ideal of R such that RkR ∩ T = 0
and RkR ⊕ T is an essential right ideal of R. Hence e ∈ Soc(RR) ⊆ Soc(RR) ⊆
RkR ⊕ T ⊆ l(k) = l(e), which is a contradiction. Hence (Rk)2 ̸= 0, which implies
R is left MC2.

(2) =⇒ (1) By (2) and Theorem 2.3, R is a left nil−injective ring with
Soc(RR) ̸= 0. Since R is left NPP , R is n−regular by [14, Theorem 2.18].

(1) =⇒ (5) Suppose that R is a n−regular ring with nonzero left socle. By [14,
Theorem 2.18], R is a semiprime left NPP ring. Since Soc(RR) ̸= 0, there exists
k ∈ Ml(R), If k2 ̸= 0, then (Rk)2 ̸= 0, hence Rk = Re, e ∈ MEl(R). If k2 = 0,
k = kbk for some b ∈ R because R is a n−regular ring. Hence Rk = Re, where
e = bk ∈ MEl(R). In any case, we have R(1 − e) is a non-essential nil−injective
maximal left ideal of R by [14, Theorem 2.18].

(10) =⇒ (1) Let M be a non-essential nil−injective maximal left ideal which is
n−regular. Then R = M ⊕R(1− e) for some e ∈ MEl(R). So M = Re and R has
a nonzero socle because R(1− e) is minimal left ideal of R.

If eR(1 − e) = 0, then M = l(R(1 − e)) is an ideal of R. Now we show that
(1 − e)Re = 0. Otherwise there exists a ∈ R such that h = ae − eae ̸= 0. Clearly,
he = h, eh = 0, h2 = 0 and h ∈ M . Since M is n−regular, there exists c ∈ R
such that h = hch. Since eR(1 − e) = 0, hch = hec(1 − e)h = 0, so h = 0 which
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is a contradiction. Hence (1 − e)Re = 0, which implies e is central. Now for any
u ∈ N(R), since M is an ideal of R, Mu ⊆ M ∩Ru. Let x ∈ M ∩Ru, then x = du
for some d ∈ R. Since x = xe, x = xe = due = deu ∈ Mu, which implies that
M ∩ Ru ⊆ Mu. Hence M ∩ Ru = Mu, by [15, Theorem 4.6], R/M is Nflat right
R− module. By Theorem 2.4(3), R/M is left nil−injective left R−module, which
implies R(1−e) is nil−injective left R−module. If eR(1−e) ̸= 0. then by the same
method in the proof of Theorem 2.3, RR(1 − e) is also nil−injective. Therefore R
is left nil−injective and hence R is n−regular. 2

The following example shows that the condition: “R” is left MC2 is not super-
fluous in Theorem 2.5.

Let Z2 be the ring of integers modulo 2. We consider the ring R =

(
Z2 0
Z2 Z2

)
.

Then R is a left NPP ring but R is not left MC2. Let M =

(
Z2 0
Z2 0

)
. Then

M = R

(
1 0
0 0

)
is a non-essential maximal left ideal of R which is nil− injective

by [20, Theorem 3]. Since R is a left quasi-duo ring, R is left min-abel ring by [12,
Theorem 1.2], However R is not n− regular. Moreover, R is not left nil− injective.
For, if R is left nil− injective, then R is n− regular by [14, Theorem 2.18], which
is a contradiction.

This example also implies that there exists a left NPP ring containing a non-
essential nil− injective maximal left ideal which is not n−regular.

Checking carefully the proof of theorem 2.3, we can obtain the following corol-
laries which generalize [20, Theorem 8] and [4, Theorem 2].

Corollary 2.6. Let R be a left MC2 ring. If R contains an injective maximal left
ideal M , then R is a left self-injective ring.

Corollary 2.7. Let R be a left MC2 ring. If R contains a finitely generated
p−injective maximal left ideal M , then R is a left p−injective ring.

According to [20], a ring R is called left HI−ring if R is a left hereditary ring
containing an injective maximal left ideal. Wei [11, Theorem 5.1] showed that R
is a left MC2 ring if and only if Soc(RR) ∩ J(R) = Soc(RR) ∩ Zl(R) and Osofsky
[8] showed that if R is a left self-injective left hereditary ring, then R is semisimple
Artinian. Hence by Corollary 2.6, we have the following Theorem.

Theorem 2.8. The following conditions are equivalent for a ring R:
(1) R is a semisimple Artinian ring.
(2) R is a semiprime left HI−ring.
(3) R is a reflexive left HI− ring.
(4) R is a left idempotent reflexive left HI−ring.
(5) R is a left MC2 left HI−ring.
(6) R is a left universally mininjective left HI−ring.
(7) R is a left mininjective left HI−ring.
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(8) R is a left minsymmetric left HI−ring.

(9) R is a left HI−ring with Soc(RR) ⊆ Soc(RR).

(10) R is a left HI−ring with J(R) = Zl(R).

(11) R is a left HI−ring with J(R) ∩ Soc(RR) = Zl(R) ∩ Soc(RR).

R is called a left C2 ring [7] if any left ideal I is isomorphic to a summand of

RR then I is a summand. It is well known that R is a von Neumann regular ring
if and only if R is a left pp left C2 ring. Since von Neumann regular rings and left
p−injective rings are left C2 and left C2 rings are left MC2. Hence by Corollary
2.7, we have the following theorem which generalizes [4, Theorem 3].

Theorem 2.9. The following conditions are equivalent for a ring R:

(1) R is a von Neumann regular ring with nonzero socle.

(2) R is a left MC2 left pp ring containing a finitely generated p−injective
maximal left ideal.

(3) R is a left idempotent reflexive left pp ring containing a finitely generated
p−injective maximal left ideal.

(4) R is a reflexive left pp ring containing a finitely generated p− injective
maximal left ideal.

(5) R is a semiprime left pp ring containing a finitely generated p−injective
maximal left ideal.

(6) R is a left universally mininjective left pp ring containing a finitely generated
p−injective maximal left ideal.

(7) R is a left mininjective left pp ring containing a finitely generated p−injective
maximal left ideal.

(8) R is a left minsymmetric left pp ring containing a finitely generated
p−injective maximal left ideal.

(9) R is a left pp ring containing a finitely generated p−injective maximal left
ideal and Soc(RR) ⊆ Soc(RR).

(10) R is a left pp ring containing a finitely generated p−injective maximal left
ideal and J(R) = Zl(R).

(11) R is a left pp ring containing a finitely generated p−injective maximal left
ideal and Soc(RR) ∩ J(R) = Soc(RR) ∩ Zl(R).

It is well known that von Neumann regular ring satisfying the ACC on left
annihilators is semisimple Artinian. Hence we have the corollary which generalizes
[4, Corollary 4].

Corollary 2.10. The following conditions are equivalent for a ring R:

(1) R is a semisimple Artinian ring.

(2) R is a left MC2, left pp and left Noetherian ring containing a p−injective
maximal left ideal.

(3) R is a left MC2 left pp ring containing a finitely generated p−injective
maximal left ideal and satisfies the ACC on left annihilators.
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A ring R is called strongly regular if a ∈ a2R for all a ∈ R. It is well known
that R is a strongly regular if and only if R is an abelian von Neumann regular ring.
Since von Neumann regular rings are reflexive, by [16, Theorem 2.6], we obtain that
R is strongly regular if and only if R quasi-normal von Neumann regular. Therefore,
by Theorem 2.9, we have the following corollary.

Corollary 2.11. The following conditions are equivalent for a ring R:

(1) R is a strongly regular ring with nonzero socle.

(2) R is a quasi-normal left MC2 left pp ring containing a finitely generated
p−injective maximal left ideal.

(3) R is a semiabelian left MC2 left pp ring containing a finitely generated
p−injective maximal left ideal.

R is called left V−ring [10] if every simple left R−module is injective, and R
is said to be left GV−ring if every left R−module is either projective or injective.
Clearly, strongly regular =⇒ left V−rings =⇒ left GV−rings, and by [13, Theorem
1.7], left V−rings are left MC2.

Let M be a left R−module and N a submodule of M . N is called an absolute
summand if for any submodule T of M such that T is maximal with respect to
N ∩ T = 0, we have N ⊕ T = M .

Lemma 2.12. Let e be a central idempotent element of R. Then Re is an absolute
summand of R.

Proof. Let T be a left ideal of R such that T is maximal with respect to Re∩T = 0.
Then Te = eT ⊆ Re∩T = 0 and so T = T (1−e) ⊆ R(1−e). Since Re∩R(1−e) = 0,
R(1−e) = T . Therefore Re⊕T = R, which shows that Re is an absolute summand
of R. 2

Theorem 2.13. R is a left V−ring if and only if R is a left MC2 left GV−ring
such that for any e ∈ MEl(R), Re is an absolute summand of R.

Proof. The necessity follows from [10, Proposition 3.7].

Now let R be left MC2 left GV−ring such that for any e ∈ MEl(R), Re
is an absolute summand of R. If W is a projective simple left R−module and
f : I −→ W is a nonzero morphism with ker(f) = K, then K is a summand of I,
that is I = K⊕L for a left ideal L of R. As L is isomorphic to W , L = Re for some
e ∈ MEl(R) because R is left MC2. By hypothesis, L is an absolute summand of
R. Then by a same proof of [10, Proposition 3.7], we obtain W is injective. 2

Since every left minimal idempotent element of left MC2 left min-abel rings is
central, by Lemma 2.12 and Theorem 2.13, we have the following corollary.

Corollary 2.14. Let R be a left min-abel ring. Then the following conditions are
equivalent:

(1) R is left V− ring.

(2) R is left MC2 left GV− ring.
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As for left min-abel rings and strongly left min-abel rings, we have the following
characterization.

Theorem 2.15. (1) The following conditions are equivalent for a ring R:

(a) R is left min-abel.

(b) For any e ∈ MEl(R), eR(1− e)Re = 0.

(c) For any k ∈ PMl(R), l(k)Rk = 0.

(d) For any a ∈ N(R) and e ∈ MEl(R), ae = 0 implies eaRe = 0.

(e) For any a ∈ N(R) and e ∈ MEl(R), ea = 0 implies eRae = 0.

(2) The following conditions are equivalent for a ring R:

(a) R is strongly left min-abel.

(b) For any k ∈ PMl(R), kRl(k) = 0.

(c) R is left min-abel and for any e ∈ MEl(R), RRe is injective.

Proof. (1) (a) =⇒ (b) and (a) =⇒ (e) are trivial, because every element of MEl(R)
is left semicentral.

(b) =⇒ (c) Let k ∈ PMl(R). Then l(k) = l(e) = R(1−e) for some e ∈ MEl(R),
so k = ek. If l(k)Rk ̸= 0, then Rk = l(k)Rk, so by (b), eRk = el(k)Rk =
eR(1− e)Rek = 0, which implies k = ek = 0, a contradiction. Hence l(k)Rk = 0

(c) =⇒ (d) By (c), l(e)Re = 0 for all e ∈ MEl(R). Since a ∈ l(e), aRe = 0
which implies eaRe = 0.

(d) =⇒ (a) and (e) =⇒ (a) Let e ∈ MEl(R). For any a ∈ R, write h = ae−eae.
If h ̸= 0, then eh = 0, he = h and h2 = 0, so Re = Rh. By (e), eRhe = 0, so
eRe = eRh = eRhe = 0, which is a contradiction. If let e = ch, c ∈ R and set
g = hc, then g ∈ MEl(R) and h = gh. Since hg = h2c = 0, by (d), ghRg = 0.
Therefore hRg = 0. Since hR = gR, gRg = hRg = 0. This is a contradiction.
Hence, in any case, h = 0, which implies R is left min-abel.

(2) (a) =⇒ (b) Let k ∈ PMl(R). Then l(k) = R(1 − e) for some e ∈ MEl(R).
By (a), e is central. Hence kRl(k) = kR(1− e) = (1− e)kR = 0

(b) =⇒ (c) Let e ∈ MEl(R). Then by (b), eRl(e) = 0, which implies eR(1−e) =
0. If (1 − e)Re ̸= 0, then Re = R(1 − e)Re. Therefore eRe = eR(1 − e)Re = 0,
which is a contradiction. Hence (1 − e)Re = 0, which shows that e is central.
Consequently, R is left min-abel and RRe is injective by (2).

(c) =⇒ (a) By [13, Theorem 1.7], R is left MC2. By[12, Theorem 1.8], R is
strongly left min-abel. 2
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