Commun. Korean Math. Soc. **27** (2012), No. 3, pp. 603–611 http://dx.doi.org/10.4134/CKMS.2012.27.3.603

FUZZY *r*-MINIMAL α -OPEN SETS ON FUZZY MINIMAL SPACES

WON KEUN MIN

ABSTRACT. We introduce the concept of fuzzy *r*-minimal α -open set on a fuzzy minimal space and some basic properties. We also introduce the concepts of fuzzy *r*-*M* α -continuous and fuzzy *r*-*M*(*M*^{*}) α -open mappings, and investigate characterization for such mappings.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [5]. Chang [1] defined fuzzy topological spaces using fuzzy sets. In [3], Ramadan introduced the concept of smooth topological space, which is a generalization of fuzzy topological space. We introduced the concept of fuzzy *r*-minimal space [4] which is an extension of the smooth fuzzy topological space. The concepts of fuzzy *r*-open sets and fuzzy *r*-*M* continuous mappings are also introduced and studied. In this paper, we introduce the concept of fuzzy *r*-minimal α -open set on a fuzzy minimal space and some basic properties. We also introduce the concepts of fuzzy *r*-*M* α -continuous and fuzzy *r*-*M*(*M*^{*}) α -open mappings, and investigate characterization for such mappings.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member A of I^X is called a *fuzzy set* [5] of X. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{1} - A$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_{α} in X is a fuzzy set x_{α} defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha \text{ if } y = x\\ 0 \text{ if } y \neq x. \end{cases}$$

Received May 13, 2010.

 $\bigodot 2012$ The Korean Mathematical Society

²⁰¹⁰ Mathematics Subject Classification. 54C08.

Key words and phrases. r-minimal semiopen, r-minimal α -open, fuzzy r-M continuous, fuzzy r-M α -continuous, fuzzy r-M semicontinuous, r- $M(M^*)$ α -open mappings.

A smooth topology [3] on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

(1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1.$ (2) $\mathcal{T}(A_1 \cap A_2) \ge \mathcal{T}(A_1) \wedge \mathcal{T}(A_2).$ (3) $\mathcal{T}(\cup A_i) \ge \wedge \mathcal{T}(A_i).$

 $(0) \quad (0) \quad (0)$

The pair (X, \mathcal{T}) is called a *smooth topological space*.

Let X be a nonempty set and $r \in (0,1] = I_0$. A fuzzy family $\mathcal{M}: I^X \to I$ on X is said to have a *fuzzy r-minimal structure* [4] if the family

$$\mathcal{M}_r = \{ A \in I^X \mid \mathcal{M}(A) \ge r \}$$

contains $\tilde{0}$ and $\tilde{1}$.

Then the pair (X, \mathcal{M}) is called a *fuzzy r-minimal space* [4] (simply *r*-FMS). Every member of \mathcal{M}_r is called a *fuzzy r-minimal open* set. A fuzzy set A is called a *fuzzy r-minimal closed* set if the complement of A (simply, A^c) is a fuzzy *r*-minimal open set.

Let (X, \mathcal{M}) be an *r*-FMS and $r \in I_0$. The fuzzy *r*-minimal closure of *A*, denoted by mC(A, r), is defined as

$$mC(A, r) = \cap \{B \in I^X : B^c \in \mathcal{M}_r \text{ and } A \subseteq B\}.$$

The fuzzy r-minimal interior of A, denoted by mI(A, r), is defined as

$$mI(A, r) = \bigcup \{ B \in I^X : B \in \mathcal{M}_r \text{ and } B \subseteq A \}.$$

Theorem 2.1 ([4]). Let (X, \mathcal{M}) be an r-FMS and $A, B \in I^X$.

(1) $mI(A, r) \subseteq A$ and if A is a fuzzy r-minimal open set, then mI(A, r) = A. (2) $A \subseteq mC(A, r)$ and if A is a fuzzy r-minimal closed set, then mC(A, r) = A.

(3) If $A \subseteq B$, then $mI(A, r) \subseteq mI(B, r)$ and $mC(A, r) \subseteq mC(B, r)$.

(4) $mI(A,r) \cap mI(B,r) \supseteq mI(A \cap B,r)$ and $mC(A,r) \cup mC(B,r) \subseteq mC(A \cup B,r)$.

(5) mI(mI(A, r), r) = mI(A, r) and mC(mC(A, r), r) = mC(A, r).

(6) $\tilde{1} - mC(A, r) = mI(\tilde{1} - A, r)$ and $\tilde{1} - mI(A, r) = mC(\tilde{1} - A, r).$

Let (X, \mathcal{M}) be an *r*-FMS and $A \in I^X$. Then a fuzzy set A is called a *fuzzy r*-minimal semiopen set [2] in X if

$$A \subseteq mC(mI(A, r), r).$$

A fuzzy set A is called a *fuzzy* r-*minimal* semiclosed set if the complement of A is fuzzy r-minimal semiopen.

Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two r-FMS's. Then $f : X \to Y$ is said to be *fuzzy* r-M continuous function if for every $A \in \mathcal{N}_r$, $f^{-1}(A)$ is in \mathcal{M}_r .

3. Fuzzy *r*-minimal α -open sets

Definition 3.1. Let (X, \mathcal{M}) be an *r*-FMS and $A \in I^X$. Then a fuzzy set A is called a *fuzzy r-minimal* α -open set in X if

$$A \subseteq mI(mC(mI(A, r), r), r)$$

A fuzzy set A is called a fuzzy r-minimal α -closed set if the complement of A is fuzzy r-minimal α -open.

Remark 3.2. The following implications are obtained but the converses are not true in general.

fuzzy r-minimal open \Rightarrow fuzzy r-minimal α -open \Rightarrow fuzzy r-minimal semiopen.

Example 3.3. Let X = I = [0, 1] and let A and B be fuzzy sets defined as follows

$$A(x) = \begin{cases} -x + \frac{1}{2}, & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{1}{3}(x-1) + \frac{1}{2}, & \text{if } \frac{1}{4} \le x \le 1; \end{cases}$$
$$B(x) = \frac{1}{4}, & \text{if } 0 \le x \le 1. \end{cases}$$

Let us consider a fuzzy minimal structure

$$\mathcal{M}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, A, \\ 0, & \text{otherwise.} \end{cases}$$

Then the fuzzy set B is a fuzzy $\frac{2}{3}$ -minimal α -open set but not fuzzy $\frac{2}{3}$ -minimal open. The $\tilde{1} - A$ is a fuzzy $\frac{2}{3}$ -minimal semiopen set but not fuzzy $\frac{2}{3}$ -minimal α -open.

Lemma 3.4. Let (X, \mathcal{M}) be an r-FMS. Then a fuzzy set A is fuzzy r-minimal α -closed if and only if $mC(mI(mC(A, r), r), r) \subseteq A$.

Theorem 3.5. Let (X, \mathcal{M}) be an r-FMS. Then any union of fuzzy r-minimal α -open sets is fuzzy r-minimal α -open.

Proof. Let A_i be a fuzzy r-minimal α -open set for $i \in J$. Then

$$A_i \subseteq mI(mC(mI(A_i, r), r), r) \subseteq mI(mC(mI(\cup A_i, r), r), r))$$

So $\cup A_i \subseteq mI(mC(mI(\cup A_i, r), r), r)$ and hence $\cup A_i$ is fuzzy *r*-minimal α -open.

As shown in the next example, the intersection of two fuzzy r-minimal α -open sets may not be fuzzy r-minimal α -open.

Example 3.6. Let X = I = [0, 1] and let A and B be fuzzy sets defined as follows

$$A(x) = -\frac{3}{4}(x-1), \quad \text{if } x \in I;$$

$$B(x) = \frac{1}{2}x$$
, if $x \in I$.

Let us consider a fuzzy minimal structure

$$\mathcal{N}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, A, B, \\ 0, & \text{otherwise.} \end{cases}$$

Then A and B are fuzzy $\frac{2}{3}$ -minimal α -open sets but $A \cap B$ is not fuzzy $\frac{2}{3}$ -minimal α -open.

Definition 3.7. Let (X, \mathcal{M}) be an r-FMS. For $A \in I^X$, $m\alpha C(A, r)$ and $m\alpha I(A, r)$, respectively, are defined as the following:

 $m\alpha C(A, r) = \cap \{F \in I^X : A \subseteq F, F \text{ is fuzzy } r \text{-minimal } \alpha \text{-closed}\};$

 $m\alpha I(A, r) = \bigcup \{ U \in I^X : U \subseteq A, U \text{ is fuzzy } r \text{-minimal } \alpha \text{-open} \}.$

Theorem 3.8. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then

- (1) $m\alpha I(A, r) \subseteq A$.
- (2) If $A \subseteq B$, then $m\alpha I(A, r) \subseteq m\alpha I(B, r)$.
- (3) A is r-minimal α -open if and only if $m\alpha I(A, r) = A$.
- (4) $m\alpha I(m\alpha I(A, r), r) = m\alpha I(A, r).$
- (5) $m\alpha C(\tilde{1}-A,r) = \tilde{1} m\alpha I(A,r)$ and $m\alpha I(\tilde{1}-A,r) = \tilde{1} m\alpha C(A,r)$.

Proof. (1), (2), (3) and (4) are obvious. (5) For $A \in I^X$,

$$\tilde{1} - m\alpha I(A, r) = \tilde{1} - \bigcup \{ U \in I^X : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \alpha \text{-open} \}$$
$$= \cap \{ \tilde{1} - U : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \alpha \text{-open} \}$$
$$= \cap \{ \tilde{1} - U : \tilde{1} - A \subseteq \tilde{1} - U, U \text{ is fuzzy } r\text{-minimal } \alpha \text{-open} \}$$
$$= m\alpha C(\tilde{1} - A, r).$$
nilarly, it is proved that $m\alpha I(\tilde{1} - A, r) = \tilde{1} - m\alpha C(A, r).$

Similarly, it is proved that $m\alpha I(\tilde{1} - A, r) = \tilde{1} - m\alpha C(A, r)$.

Theorem 3.9. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then

- (1) $A \subseteq m\alpha C(A, r)$.
- (2) If $A \subseteq B$, then $m\alpha C(A, r) \subseteq m\alpha C(B, r)$.
- (3) F is r-minimal α -closed if and only if $m\alpha C(F, r) = F$.
- (4) $m\alpha C(m\alpha C(A, r), r) = m\alpha C(A, r).$

Proof. It is similar to the proof of Theorem 3.8.

Lemma 3.10. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then $x_\alpha \in m\alpha C(A, r)$ if and only if $A \cap V \neq \tilde{0}$ for every r-minimal α -open set V containing x_{α} .

Proof. If there is a fuzzy r-minimal β -open set V containing x_{α} such that $A \cap V = \tilde{0}$, then $\tilde{1} - V$ is a fuzzy *r*-minimal α -closed set such that $A \subseteq \tilde{1} - V$, $x_{\alpha} \notin \tilde{1} - V$. From this fact, $x_{\alpha} \notin m\alpha C(A, r)$.

The converse is easily proved.

4. Fuzzy r-M α -continuity and fuzzy r-M α -open mappings

Definition 4.1. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be *r*-FMS's. Then a mapping f: $(X, \mathcal{M}) \to (Y, \mathcal{N})$ is said to be *fuzzy r-M* α -continuous if for each point x_{α} and each fuzzy *r*-minimal open set *V* containing $f(x_{\alpha})$, there exists a fuzzy *r*-minimal α -open set *U* containing x_{α} such that $f(U) \subseteq V$.

Let (X, \mathcal{M}) and (Y, \mathcal{N}) be r-FMS's. Then a mapping $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ is said to be *fuzzy r-M semicontinuous* [2] if for each point x_{α} and each fuzzy *r*minimal open set V containing $f(x_{\alpha})$, there exists a fuzzy *r*-minimal semiopen set U containing x_{α} such that $f(U) \subseteq V$.

Remark 4.2. It is obvious that every fuzzy r- $M \alpha$ -continuous mapping is fuzzy r-M semicontinuous but the converse may not be true as shown in the next example.

fuzzy r-M continuous \Rightarrow fuzzy r-M α -continuous \Rightarrow fuzzy r-M semicontinuous.

Example 4.3. Let X = I = [0, 1] and let A, B and C be fuzzy sets defined as follows

$$A(x) = \begin{cases} x + \frac{1}{2}, \text{ if } 0 \le x \le \frac{1}{4}, \\ -\frac{1}{3}(x-1) + \frac{1}{2}, \text{ if } \frac{1}{4} \le x \le 1; \end{cases}$$
$$B(x) = \frac{1}{4}(x+3), \text{ if } x \in I; \\ C(x) = -\frac{1}{4}(x-1), \text{ if } x \in I. \end{cases}$$

Let us consider fuzzy minimal structures $\mathcal{L}, \mathcal{M}, \mathcal{N}$ as the following:

$$\mathcal{L}(\mu) = \begin{cases} \frac{2}{3}, & \text{if}\mu = \tilde{0}, \tilde{1}, A, \\ 0, & \text{otherwise;} \end{cases}$$
$$\mathcal{M}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, B, \\ 0, & \text{otherwise;} \end{cases}$$
$$\mathcal{N}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, C, \\ 0, & \text{otherwise.} \end{cases}$$

Then:

(1) The identity function $f: (X, \mathcal{L}) \to (X, \mathcal{M})$ is fuzzy r-M α -continuous but not fuzzy r-M continuous.

(2) the identity function $g: (X, \mathcal{N}) \to (X, \mathcal{L})$ is fuzzy r-M semicontinuous but not fuzzy r-M α -continuous.

Theorem 4.4. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then the following statements are equivalent:

(1) f is fuzzy r-M α -continuous.

(2) $f^{-1}(V)$ is a fuzzy r-minimal α -open set for each fuzzy r-minimal open set V in Y.

(3) $f^{-1}(B)$ is a fuzzy r-minimal α -closed set for each fuzzy r-minimal closed set B in Y.

(4) $f(m\alpha C(A, r)) \subseteq mC(f(A), r)$ for $A \in I^X$.

(5) $m\alpha C(f^{-1}(B), r) \subseteq f^{-1}(mC(B, r))$ for $B \in I^Y$. (6) $f^{-1}(mI(B, r)) \subseteq m\alpha I(f^{-1}(B), r)$ for $B \in I^Y$.

Proof. (1) \Rightarrow (2) Let V be any fuzzy r-minimal open set in Y and $x_{\alpha} \in f^{-1}(V)$. By hypothesis, there exists a fuzzy r-minimal α -open set U containing x_{α} such that $f(U) \subseteq V$. This implies that $\cup U = f^{-1}(V)$ and hence $f^{-1}(V)$ is fuzzy r-minimal α -open. $(2) \rightarrow (2) \stackrel{r}{\cap 1}$

$$\begin{aligned} &(2) \Rightarrow (3) \text{ Obvious.} \\ &(3) \Rightarrow (4) \text{ For } A \in I^X, \\ &f^{-1}(mC(f(A), r)) \\ &= f^{-1}(\cap\{F \in I^Y : f(A) \subseteq F \text{ and } F \text{ is fuzzy } r\text{-minimal closed}\}) \\ &= \cap\{f^{-1}(F) \in I^X : A \subseteq f^{-1}(F) \text{ and } f^{-1}(F) \text{ is fuzzy } r\text{-minimal } \alpha\text{-closed}\} \\ &\supseteq \cap\{K \in I^X : A \subseteq K \text{ and } K \text{ is fuzzy } r\text{-minimal } \alpha\text{-closed}\} \\ &= m\alpha C(A, r). \\ \text{Hence } f(m\alpha C(A, r)) \subseteq mC(f(A), r). \\ &(4) \Rightarrow (5) \text{ For } B \in I^Y, \end{aligned}$$

$$f(m\alpha C(f^{-1}(B),r))\subseteq mC(f(f^{-1}(B)),r)\subseteq mC(B,r).$$
 So $m\alpha C(f^{-1}(B),r)\subseteq f^{-1}(mC(B,r)).$

(5)
$$\Rightarrow$$
 (6) For $B \subseteq Y$,
 $f^{-1}(mI(B,r)) = f^{-1}(\tilde{1} - mC(\tilde{1} - B, r))$
 $= \tilde{1} - f^{-1}(mC(\tilde{1} - B, r))$
 $\subseteq \tilde{1} - m\alpha C(f^{-1}(\tilde{1} - B), r)$
 $= m\alpha I(f^{-1}(B), r).$

Therefore, $f^{-1}(mI(B, r)) \subseteq m\alpha I(f^{-1}(B), r)$.

(6) \Rightarrow (1) Let V be any fuzzy r-minimal open set containing $f(x_{\alpha})$ for a fuzzy point x_{α} . By hypothesis, $x_{\alpha} \in f^{-1}(V) = f^{-1}(mI(V,r)) \subseteq m\alpha I(f^{-1}(V),r)$. Since $x_{\alpha} \in m\alpha I(f^{-1}(V), r)$, there exists a fuzzy r-minimal α -open set U containing x_{α} such that $U \subseteq f^{-1}(V)$. This implies $f^{-1}(V)$ is fuzzy r-minimal α -open. Hence f is fuzzy r-M α -continuous.

Definition 4.5. Let $f: (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on *r*-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then

(1) f is said to be *fuzzy* r- $M \alpha$ -*open* if for fuzzy r-minimal open set A in X, f(A) is fuzzy r-minimal α -open in Y;

(2) f is said to be *fuzzy* r-M α -closed if for fuzzy r-minimal closed set A in X, f(A) is fuzzy r-minimal α -closed in Y;

Theorem 4.6. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then the following are equivalent:

(1) f is fuzzy r-M α -open.

- (2) $f(mI(A, r)) \subseteq m\alpha I(f(A), r)$ for $A \in I^X$.
- (3) $mI(f^{-1}(B), r) \subseteq f^{-1}(m\alpha I(B, r))$ for $B \in I^Y$.

Proof. (1) \Rightarrow (2) For $A \in I^X$,

 $f(mI(A,r)) = f(\cup \{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-minimal open}\})$

$$= \cup \{ f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r \text{-minimal } \alpha \text{-open} \}$$

 $\subseteq \bigcup \{ U \in I^X : U \subseteq f(A), U \text{ is fuzzy } r \text{-minimal } \alpha \text{-open} \}$ $= m\alpha I(f(A), r).$

Hence $f(mI(A, r)) \subseteq m\alpha I(f(A), r)$.

 $(2) \Rightarrow (3)$ For $B \in I^Y$, from (3) it follows that

$$f(mI(f^{-1}(B), r)) \subseteq m\alpha I(f(f^{-1}(B)), r) \subseteq m\alpha I(B, r).$$

Hence we get (3).

 $(3) \Rightarrow (2)$ Obvious.

 $(2) \Rightarrow (1)$ Let A be a fuzzy r-minimal open set in X. Then A = mI(A, r). By $(2), f(A) = m\alpha I(f(A), r)$ and it implies f(A) is fuzzy r-minimal α -open. \Box

Theorem 4.7. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then the following are equivalent:

- (1) f is fuzzy r-M α -closed.
- (2) $mC(f(A), r) \subseteq (f(mC(A, r)))$ for $A \in I^X$.

(3) $f^{-1}(mC(B,r)) \subseteq mC(f^{-1}(B),r)$ for $B \in I^Y$.

Proof. It is similar to the proof of Theorem 4.6.

Definition 4.8. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on *r*-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . Then

(1) f is said to be *fuzzy* $r \cdot M^* \alpha \cdot open$ if for every fuzzy r-minimal α -open set A in X, f(A) is fuzzy r-minimal open in Y;

(2) f is said to be *fuzzy* r- $M^* \alpha$ -*closed* if for every fuzzy r-minimal α -closed set A in X, f(A) is fuzzy r-minimal closed in Y.

Theorem 4.9. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) .

(1) f is fuzzy $r - M^* \alpha$ -open.

(2) $f(m\alpha I(A,r)) \subseteq mI(f(A),r)$ for $A \in I^X$. (3) $m\alpha I(f^{-1}(B),r) \subseteq f^{-1}(mI(B,r))$ for $B \in I^Y$.

 $(5) mar(f (D), r) \subseteq f (mr(D, r)),$ Then $(1) \Rightarrow (2) \Leftrightarrow (3).$ \square

Proof. (1) \Rightarrow (2) For $A \in I^X$, $f(m\alpha I(A, r)) = f(\cup \{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-minimal } \alpha\text{-open}\})$ $= \cup \{f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r\text{-minimal open}\}$ $\subseteq \cup \{U \in I^Y : U \subseteq f(A), U \text{ is fuzzy } r\text{-minimal open}\}$ = mI(f(A), r).

Hence $f(m\alpha I(A, r)) \subseteq mI(f(A), r)$. (2) \Rightarrow (3) For $B \in I^Y$, from (3),

$$f(m\alpha I(f^{-1}(B), r)) \subseteq mI(f(f^{-1}(B)), r) \subseteq mI(B, r).$$

 $(3) \Rightarrow (2)$ Obvious.

Similarly, we have the following theorem:

Theorem 4.10. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) .

(1) f is fuzzy $r \cdot M^* \alpha$ -closed. (2) $mC(f(A), r) \subseteq (f(m\alpha C(A, r)))$ for $A \in I^X$. (3) $f^{-1}(mC(B, r)) \subseteq m\alpha C(f^{-1}(B), r)$ for $B \in I^Y$. Then (1) \Rightarrow (2) \Leftrightarrow (3).

Let X be a nonempty set and $\mathcal{M}: I^X \to I$ a fuzzy family on X. The fuzzy r-minimal structure \mathcal{M}_r is said to have the property (\mathcal{U}) [4] if for $A_i \in \mathcal{M}_r$ $(i \in J)$,

$$\mathcal{M}_r(\cup A_i) \ge \wedge \mathcal{M}_r(A_i).$$

Theorem 4.11 ([4]). Let (X, \mathcal{M}) be an r-FMS with the property (\mathcal{U}) . Then for $A \in I^X$, mI(A, r) = A if and only if A is fuzzy r-minimal open.

Obviously the following corollaries are obtained:

Corollary 4.12. Let $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . If (Y, \mathcal{N}) has the property (\mathcal{U}) , then the following are equivalent:

(1) f is fuzzy $r-M^* \alpha$ -open.

(2) $f(m\alpha I(A, r)) \subseteq mI(f(A), r)$ for $A \in I^X$.

(3) $m\alpha I(f^{-1}(B), r) \subseteq f^{-1}(mI(B, r))$ for $B \in I^Y$.

Corollary 4.13. Let $f: (X, \mathcal{M}) \to (Y, \mathcal{N})$ be a mapping on r-FMS's (X, \mathcal{M}) and (Y, \mathcal{N}) . If (Y, \mathcal{N}) has the property (\mathcal{U}) , then the following are equivalent:

- (1) f is fuzzy r- $M^* \alpha$ -closed.
- (2) $mC(f(A), r) \subseteq (f(m\alpha C(A, r)))$ for $A \in I^X$.
- (3) $f^{-1}(mC(B,r)) \subseteq m\alpha C(f^{-1}(B),r)$ for $B \in I^Y$.

References

[1] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. 24 (1968), 182–190.

610

- [2] W. K. Min and M. H. Kim, Fuzzy r-minimal semiopen sets and fuzzy r-M semicontinuous functions on fuzzy r-minimal spaces, Proceedings of KIIS Spring Conference 2009, 19 (1) (2009), 49–52.
- [3] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), no. 3, 371–375.
- [4] Y. H. Yoo, W. K. Min, and J. I. Kim, Fuzzy r-minimal structures and fuzzy r-minimal spaces, Far East J. Math. Sci. 33 (2009), no. 2, 193–205.
- [5] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail address*: wkmin@kangwon.ac.kr