Commun. Korean Math. Soc. **27** (2012), No. 3, pp. 583–589 http://dx.doi.org/10.4134/CKMS.2012.27.3.583

LOCALLY SYMMETRIC HALF LIGHTLIKE SUBMANIFOLDS IN AN INDEFINITE KENMOTSU MANIFOLD

Dae Ho Jin

ABSTRACT. In this paper, we study locally symmetric half lightlike submanifolds M of an indefinite Kenmotsu manifold \overline{M} subject to the conditions: (1) The transversal vector bundle tr(TM) is parallel with respect to the connection $\overline{\nabla}$ of \overline{M} and (2) M is irrotational.

1. Introduction

The class of lightlike submanifolds of codimension 2 is compose entirely of two classes by virtue of the rank of its radical distribution, named by half lightlike and coisotropic submanifolds [2]. Half lightlike submanifold is a special case of r-lightlike submanifold such that r = 1 and its geometry is more general form than that of coisotrophic submanifold. Much of the works on half lightlike submanifolds will be immediately generalized in a formal way to general rlightlike submanifolds of arbitrary codimension and arbitrary rank.

In 1971, K. Kenmotsu proved the following result [6]: If a Kenmotsu manifold is locally symmetric, then it is of constant negative curvature -1.

The objective of this paper is study of the half lightlike version of above Kenmotsu's result. We prove the following results:

Let M be a half lightlike submanifold of an indefinite Kenmotsu manifold \overline{M} equipped with an almost contact metric structure $(J, \zeta, \theta, \overline{g})$.

- The structure 1-form θ is closed, i.e., $d\theta = 0$, on TM.
- If M is a locally symmetric space and the transversal vector bundle tr(TM) of M is parallel with respect to the connection $\overline{\nabla}$ of \overline{M} , then the Ricci type tensor $R^{(0,2)}$ is a symmetric Ricci tensor on M.
- If M is an irrotational and locally symmetric space and tr(TM) is parallel with respect to the connection $\overline{\nabla}$ of \overline{M} , then M is a space of constant curvature 0 and the vector field ζ of \overline{M} is normal to M.

 $\odot 2012$ The Korean Mathematical Society

Received March 29, 2011; Revised March 21, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.

 $Key\ words\ and\ phrases.$ locally symmetric, irrotational, half lightlike submanifolds, indefinite Kenmotsu manifold .

DAE HO JIN

2. Half lightlike submanifolds

An odd dimensional semi-Riemannian manifold \overline{M} is said to be an *indefinite* Kenmotsu manifold [4, 6, 8] if there exists a structure $(J, \zeta, \theta, \overline{g})$, where J is a (1, 1)-type tensor field, ζ is a vector field which called the characteristic vector field, θ is a 1-form and \overline{g} is the semi-Riemannian metric on \overline{M} such that

(2.1)
$$J^2 X = -X + \theta(X)\zeta, \quad J\zeta = 0, \quad \theta \circ J = 0, \quad \theta(\zeta) = 1,$$

$$\theta(X) = \bar{g}(\zeta, X), \quad \bar{g}(JX, JY) = \bar{g}(X, Y) - \theta(X)\theta(Y)$$

(2.2)
$$\bar{\nabla}_X \zeta = -X + \theta(X)\zeta,$$

(2.3)
$$(\bar{\nabla}_X J)Y = -\bar{g}(JX,Y)\zeta + \theta(Y)JX,$$

for any vector fields X, Y on \overline{M} , where $\overline{\nabla}$ is the Levi-Civita connection of \overline{M} .

A submanifold M of a semi-Riemannian manifold \overline{M} of codimension 2 is called a *half lightlike submanifold* if the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ of M is a vector subbundle of the tangent bundle TM and the normal bundle TM^{\perp} of rank 1. Then there exist complementary non-degenerate distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} respectively, called the *screen* and *co-screen distribution* on M, such that

(2.4)
$$TM = Rad(TM) \oplus_{orth} S(TM), TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp}),$$

where the symbol \oplus_{orth} denotes the orthogonal direct sum. We denote such a half lightlike submanifold by M = (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E over M. Let ξ be a section on Rad(TM). Choose $L \in \Gamma(S(TM^{\perp}))$ as a unit vector field with $\bar{g}(L, L) = \pm 1$. In this paper we may assume that $\bar{g}(L, L) = 1$ without loss of generality. Consider the orthogonal complementary distribution $S(TM)^{\perp}$ to S(TM) in $T\bar{M}$. Certainly ξ and Lbelong to $\Gamma(S(TM)^{\perp})$. Then we have the following decomposition

$$S(TM)^{\perp} = S(TM^{\perp}) \oplus_{orth} S(TM^{\perp})^{\perp},$$

where $S(TM^{\perp})^{\perp}$ is the orthogonal complementary to $S(TM^{\perp})$ in $S(TM)^{\perp}$. For any null section ξ of Rad(TM) on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined null vector field $N \in \Gamma(ltr(TM))$ satisfying

(2.5)
$$\bar{g}(\xi, N) = 1, \ \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, L) = 0, \ \forall X \in \Gamma(S(TM))$$

We call N, ltr(TM) and $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$ the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to S(TM) respectively. Thus $T\overline{M}$ is decomposed as follows:

(2.6)
$$T\overline{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM) \\ = \{Rad(TM) \oplus ltr(TM)\} \oplus_{orth} S(TM) \oplus_{orth} S(TM^{\perp}).$$

Let P be the projection morphism of TM on S(TM) with respect to the first equation of the decompositions (2.4) [denote $(2.4)_1$]. Then the local Gauss

and Weingarten formulas are given by

- (2.7) $\overline{\nabla}_X Y = \nabla_X Y + B(X, Y)N + D(X, Y)L,$
- (2.8) $\overline{\nabla}_X N = -A_N X + \tau(X)N + \rho(X)L,$
- (2.9) $\bar{\nabla}_X L = -A_L X + \phi(X)N,$
- (2.10) $\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$
- (2.11) $\nabla_X \xi = -A_{\xi}^* X \tau(X)\xi, \ \forall X, Y \in \Gamma(TM),$

where ∇ and ∇^* are induced linear connections on TM and S(TM) respectively, B and D are called the *local second fundamental forms* of M, C is called the *local second fundamental form* on S(TM). A_N , A_{ξ}^* and A_L are linear operators on TM and τ , ρ and ϕ are 1-forms on TM. Since ∇ is torsion-free, ∇ is also torsion-free, and B and D are symmetric. From the facts $B(X,Y) = \bar{g}(\bar{\nabla}_X Y, \xi)$ and $D(X,Y) = \bar{g}(\bar{\nabla}_X Y, L)$ for all $X, Y \in \Gamma(TM)$, we know that B and D are independent of the choice of a screen distribution and satisfy

(2.12)
$$B(X,\xi) = 0, \quad D(X,\xi) = -\phi(X), \ \forall X \in \Gamma(TM).$$

Replacing Y by ξ to (2.7) and using (2.11) and (2.12), we have

(2.13)
$$\bar{\nabla}_X \xi = -A_{\xi}^* X - \tau(X)\xi - \phi(X)L, \ \forall X \in \Gamma(TM).$$

The induced connection ∇ of M is not metric and satisfies

(2.14) $(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y),$

for all $X, Y, Z \in \Gamma(TM)$, where η is a 1-form on TM such that

(2.15) $\eta(X) = \bar{g}(X, N), \ \forall X \in \Gamma(TM).$

But the connection ∇^* on S(TM) is metric. The above three local second fundamental forms are related to their shape operators by

- (2.16) $B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$
- (2.17) $C(X, PY) = g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0,$
- $(2.18) D(X,PY) = g(A_L X,PY), \bar{g}(A_L X,N) = \rho(X),$

$$(2.19) D(X,Y) = g(A_L X,Y) - \phi(X)\eta(Y), \ \forall X, Y \in \Gamma(TM).$$

Denote by \overline{R} and R the curvature tensors of the connections $\overline{\nabla}$ and ∇ respectively. Using the local Gauss-Weingarten formulas $(2.4) \sim (2.6)$ and (2.19), we have the Gauss-Codazzi equations for M, for all $X, Y, Z \in \Gamma(TM)$:

$$\begin{array}{ll} (2.20) & \bar{R}(X,Y)Z \\ &= R(X,Y)Z + B(X,Z)A_{N}Y - B(Y,Z)A_{N}X \\ &+ D(X,Z)A_{L}Y - D(Y,Z)A_{L}X \\ &+ \{(\nabla_{X}B)(Y,Z) - (\nabla_{Y}B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) \\ &+ \phi(X)D(Y,Z) - \phi(Y)D(X,Z)\}N, \\ &+ \{(\nabla_{X}D)(Y,Z) - (\nabla_{Y}D)(X,Z) + \rho(X)B(Y,Z) - \rho(Y)B(X,Z)\}L, \end{array}$$

DAE HO JIN

$$\begin{aligned} (2.21) \ \bar{R}(X,Y)N \\ &= -\nabla_X(A_NY) + \nabla_Y(A_NX) + A_N[X,Y] \\ &+ \tau(X)A_NY - \tau(Y)A_NX + \rho(X)A_LY - \rho(Y)A_LX \\ &+ \{B(Y,A_NX) - B(X,A_NY) + 2d\tau(X,Y) + \phi(X)\rho(Y) - \phi(Y)\rho(X)\}N \\ &+ \{D(Y,A_NX) - D(X,A_NY) + 2d\rho(X,Y) + \rho(X)\tau(Y) - \rho(Y)\tau(X)\}L, \end{aligned}$$

$$\begin{aligned} (2.22) \quad & \bar{R}(X,Y) \\ & = -\nabla_X(A_LY) + \nabla_Y(A_LX) + A_L[X,Y] + \phi(X)A_NY - \phi(Y)A_NX \\ & + \{B(Y,A_LX) - B(X,A_LY) + 2d\phi(X,Y) + \tau(X)\phi(Y) \\ & -\tau(Y)\phi(X)\}N. \end{aligned}$$

Using (2.10) and (2.11), for all $X, Y \in \Gamma(TM)$, we obtain

(2.23)
$$R(X,Y)\xi = -\nabla_X^*(A_{\xi}^*Y) + \nabla_Y^*(A_{\xi}^*X) + A_{\xi}^*[X,Y] - \tau(X)A_{\xi}^*Y + \tau(Y)A_{\xi}^*X + \{C(Y,A_{\xi}^*X) - C(X,A_{\xi}^*Y) - 2d\tau(X,Y)\}\xi.$$

The induced Ricci type tensor ${\cal R}^{(0,\,2)}$ of ${\cal M}$ is defined by

$$R^{(0,2)}(X,Y) = trace\{Z \to R(Z,X)Y\}, \ \forall X, Y \in \Gamma(TM).$$

In general, $R^{(0,2)}$ is not symmetric [1, 2]. A tensor field $R^{(0,2)}$ of M is called its *induced Ricci tensor* of M if it is symmetric. It is well-known that $R^{(0,2)}$ is symmetric if and only if the 1-form τ is closed, i.e., $d\tau = 0$ on any $\mathcal{U} \subset M$ [2].

3. Main results

Theorem 3.1. Let M be a half lightlike submanifold of an indefinite Kenmotsu manifold \overline{M} . Then the 1-form θ is closed, i.e., $d\theta = 0$, on TM.

Proof. From the decomposition (2.6) of $T\overline{M}$, ζ is decomposed by

(3.1)
$$\zeta = W + mN + nL,$$

where W is a smooth vector field on M and $m = \theta(\xi)$ and $n = \theta(L)$ are smooth functions. Substituting (3.1) in (2.2) and using (2.8) and (2.9), we have

(3.2) $\nabla_X W = -X + \theta(X)W + mA_N X + nA_L X,$

(3.3)
$$Xm + m\tau(X) + n\phi(X) + B(X, W) = m\theta(X),$$

(3.4) $Xn + m\rho(X) + D(X, W) = n\theta(X), \ \forall X \in \Gamma(TM).$

Substituting (3.3) and (3.4) into the following two equations

$$[X,Y]m = X(Ym) - Y(Xm), \ [X,Y]n = X(Yn) - Y(Xn), \ \forall X, Y \in \Gamma(TM),$$

and using (2.20), (2.21), (2.22), (3.1), (3.3), (3.4), we have respectively

(3.5) $2m \, d\theta(X,Y) = \bar{g}(\bar{R}(X,Y)\zeta,\,\xi), \ 2n \, d\theta(X,Y) = \bar{g}(\bar{R}(X,Y)\zeta,\,L).$

586

Substituting (3.2) into $R(X, Y)W = \nabla_X \nabla_Y W - \nabla_Y \nabla_X W - \nabla_{[X, Y]} W$ and using (2.20)~(2.22), (3.2)~(3.5) and the fact that ∇ is torsion-free, we have

(3.6)
$$\bar{R}(X,Y)\zeta = \theta(X)Y - \theta(Y)X + 2d\theta(X,Y)\zeta, \ \forall X, Y \in \Gamma(TM).$$

Taking the scalar product with ζ to (3.6) and using the fact $\bar{g}(\bar{R}(X,Y)\zeta,\zeta) = 0$ and (2.1), we show that $d\theta = 0$ on TM. Thus we have our assertion.

Theorem 3.2. Let M be a locally symmetric half lightlike submanifold of an indefinite Kenmotsu manifold \overline{M} . If the transversal vector bundle tr(TM) is parallel with respect to the connection $\overline{\nabla}$ on \overline{M} , then the tensor field $R^{(0,2)}$ is a symmetric Ricci tensor on M and the curvature tensor R of M is given by

$$R(X,Y)Z = n\phi(Z)\{\eta(X)Y - \eta(Y)X\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

Proof. As tr(TM) is parallel with respect to $\overline{\nabla}$ and $tr(TM) = Span\{N, L\}$, by (2.8) and (2.9) we have $A_N = A_L = 0$. Due to (2.17) and (2.18), we also have $C = \rho = 0$. Replacing X by ξ to (2.18)₁ and using (2.12)₂, we show that $\phi(PX) = 0$, i.e., $\phi = 0$ on S(TM). Substituting (3.1) into $\overline{R}(X, Y)\zeta$ and using (2.20), (2.21) and (2.22), for all $X, Y \in \Gamma(TM)$, we have

$$\bar{R}(X,Y)\zeta = R(X,Y)W + \bar{g}(\bar{R}(X,Y)\zeta,\xi)N + \bar{g}(\bar{R}(X,Y)\zeta,L)L.$$

From this equation, (3.5) and (3.6) with $d\theta = 0$, we obtain

(3.7)
$$R(X,Y)W = \theta(X)Y - \theta(Y)X, \quad \forall X, Y \in \Gamma(TM).$$

Applying $\overline{\nabla}_X$ to $\theta(Y) = g(Y, \zeta)$ and using (2.2) and (2.6), we have

(3.8)
$$(\nabla_X \theta)(Y) = lB(X,Y) + nD(X,Y) - g(X,Y) + \theta(X)\theta(Y),$$

for all $X, Y \in \Gamma(TM)$, where we set $l = \bar{g}(\zeta, N)$. Applying ∇_Z to (3.7) and using M is locally symmetric, we have

$$R(X,Y)\nabla_Z W = (\nabla_Z \theta)(X)Y - (\nabla_Z \theta)(Y)X, \ \forall X, Y, Z \in \Gamma(TM).$$

Substituting (3.2) and (3.8) in this equation and using (3.7), we obtain

(3.9)
$$R(X,Y)Z = \{g(X,Z) - lB(X,Z) - nD(X,Z)\}Y - \{g(Y,Z) - lB(Y,Z) - nD(Y,Z)\}X$$

for all X, Y, $Z \in \Gamma(TM)$. Replacing Z by ξ to (3.9) and using (2.12), we have

(3.10)
$$R(X,Y)\xi = n\{\phi(X)Y - \phi(Y)X\}, \quad \forall X, Y \in \Gamma(TM).$$

Taking the scalar product with N to (2.23) and (3.10) respectively and then, comparing this two results, we have

(3.11)
$$2d\tau(X,Y) = n\{\phi(Y)\eta(X) - \phi(X)\eta(Y)\}, \quad \forall X, Y \in \Gamma(TM).$$

Due to (2.19), we have $D(X,Y) = -\phi(X)\eta(Y)$ for all $X, Y \in \Gamma(TM)$. As D is symmetric, we get $\phi(X)\eta(Y) - \phi(Y)\eta(X) = 0$. From this result and (3.11),

DAE HO JIN

we have $d\tau = 0$ on TM. Thus $R^{(0,2)}$ is a symmetric Ricci tensor on M. From (2.20), (2.21), (3.9) and the facts $d\tau = 0$ and $D(X,Y) = -\phi(X)\eta(Y)$, we have (3.12) $0 = \bar{g}(\bar{R}(X,Y)N,Z) = -\bar{g}(\bar{R}(X,Y)Z,N) = -\bar{g}(R(X,Y)Z,N)$

$$= \{g(Y,Z) - lB(Y,Z)\}\eta(X) - \{g(X,Z) - lB(X,Z)\}\eta(Y)$$

for all X, Y, $Z \in \Gamma(TM)$. Replacing Y by ξ to (3.12) and using (2.12), we get

(3.13) $g(X,Y) = lB(X,Y), \quad \forall X, Y \in \Gamma(TM).$

Substituting (3.13) into (3.9) and using $D(X, Z) = -\phi(Z)\eta(X)$, we have

(3.14)
$$R(X,Y)Z = n\phi(Z)\{\eta(X)Y - \eta(Y)X\}, \quad \forall X, Y, Z \in \Gamma(TM). \square$$

Definition 1. A half lightlike submanifold M is said to be *irrotational* [3, 7] if $\overline{\nabla}_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$. From (2.7) and (2.12), we show that this definition is equivalent to $D(X, \xi) = 0 = \phi(X)$ for all $X \in \Gamma(TM)$.

Theorem 3.3. Let M be a locally symmetric irrotational half lightlike submanifold of an indefinite Kenmotsu manifold \overline{M} such that tr(TM) is parallel with respect to $\overline{\nabla}$. Then M is a space of constant curvature 0 and the vector field ζ of \overline{M} is normal to M.

Proof. If M is irrotational, we have $\phi = 0$ on TM. Thus we have R(X, Y)Z = 0 for all $X, Y, Z \in \Gamma(TM)$ due to (3.14). Therefore M is a space of constant curvature 0. From (2.19), we have D = 0 on TM. Replacing Z by W to (3.9) and then, comparing this result with (3.7) and using the facts D = 0 and $\theta(X) = g(X, W) + m\eta(X)$ on TM, we have

$$\{m\eta(X) + lB(X, W)\}Y = \{m\eta(Y) + lB(Y, W)\}X.$$

Replacing Y by ξ to this and using (2.12) and $X = PX + \eta(X)\xi$, we have

 $mPX = lB(X, W)\xi, \ \forall X \in \Gamma(TM).$

The left term of this equation belongs to S(TM) and the right term belongs to TM^{\perp} . This imply mPX = 0 and lB(X, W) = 0 for all $X \in \Gamma(TM)$. From the first equation of this results we deduce to m = 0. Replacing Y by W to (3.13) and using lB(X, W) = 0, we have g(X, W) = 0 for all $X \in \Gamma(TM)$. This implies $W = l\xi$. Thus the vector field ζ is decomposed by $\zeta = l\xi + nL$. This implies that ζ is normal to M.

Definition 2. A vector field X on \overline{M} is called a *conformal Killing vector field* [5, 9] if $\overline{\mathcal{L}}_X \overline{g} = -2\delta \overline{g}$, where δ is a non-vanishing smooth function on \overline{M} and $\overline{\mathcal{L}}_X$ denotes the Lie derivative on \overline{M} with respect to X. A distribution \mathcal{G} on \overline{M} is said to be a *conformal Killing distribution* on \overline{M} if each vector field belonging to \mathcal{G} is a conformal Killing vector field.

Note 1 [5]. Using (2.9) and (2.19), for all $X, Y \in \Gamma(TM)$, we have

$$\bar{g}(\nabla_X L, Y) = -g(A_L X, Y) + \phi(X)\eta(Y) = -D(X, Y),$$

$$(\bar{\mathcal{L}}_L \bar{g})(X, Y) = \bar{g}(\bar{\nabla}_X L, Y) + \bar{g}(X, \bar{\nabla}_Y L) = -2D(X, Y)$$

Thus $S(TM^{\perp})$ is a conformal Killing distribution if and only if D satisfies

$$(3.15) D(X,Y) = \delta g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Corollary 1. Let M be a locally symmetric half lightlike submanifold of an indefinite Kenmotsu manifold \overline{M} such that tr(TM) is parallel with respect to $\overline{\nabla}$. If $S(TM^{\perp})$ is a conformal Killing distribution on \overline{M} , then M is a space of constant curvature 0 and the structure vector field ζ of \overline{M} is normal to M.

Proof. If $S(TM^{\perp})$ is a conformal Killing distribution on \overline{M} , then, from $(2.12)_2$ and (3.15), we have $\phi = 0$ on TM. By Theorem 3.3, we have our assertion. \Box

References

- K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [2] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121–161.
- [3] _____, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
- [4] D. H. Jin, The curvatures of lightlike hypersurfaces in an indefinite Kenmotsu manifold, Balkan Journal of Geometry and its Application 17 (2012), no. 2, 49–57.
- [5] _____, Einstein half lightlike submanifolds with special conformalities, to appear in Bull. Korean Math. Soc.
- [6] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. 21 (1972), 93–103.
- [7] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
- [8] R. Shankar Gupta and A. Sharfuddin, Lightlike submanifolds of indefinite Kenmotsu manifold, Int. J. Contemp. Math. Sci. 5 (2010), no. 9-12, 475–496.
- [9] K. Yano, Integrable Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

DEPARTMENT OF MATHEMATICS DONGGUK UNIVERSITY KYONGJU 780-714, KOREA *E-mail address*: jindh@dongguk.ac.kr