LOCALLY SYMMETRIC HALF LIGHTLIKE SUBMANIFOLDS IN AN INDEFINITE KENMOTSU MANIFOLD

Dae Ho Jin

Abstract

In this paper, we study locally symmetric half lightlike submanifolds M of an indefinite Kenmotsu manifold \bar{M} subject to the conditions: (1) The transversal vector bundle $\operatorname{tr}(T M)$ is parallel with respect to the connection $\bar{\nabla}$ of \bar{M} and (2) M is irrotational.

1. Introduction

The class of lightlike submanifolds of codimension 2 is compose entirely of two classes by virtue of the rank of its radical distribution, named by half lightlike and coisotropic submanifolds [2]. Half lightlike submanifold is a special case of r-lightlike submanifold such that $r=1$ and its geometry is more general form than that of coisotrophic submanifold. Much of the works on half lightlike submanifolds will be immediately generalized in a formal way to general r lightlike submanifolds of arbitrary codimension and arbitrary rank.

In 1971, K. Kenmotsu proved the following result [6]: If a Kenmotsu manifold is locally symmetric, then it is of constant negative curvature -1 .

The objective of this paper is study of the half lightlike version of above Kenmotsu's result. We prove the following results:

Let M be a half lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} equipped with an almost contact metric structure $(J, \zeta, \theta, \bar{g})$.

- The structure 1-form θ is closed, i.e., $d \theta=0$, on $T M$.
- If M is a locally symmetric space and the transversal vector bundle $\operatorname{tr}(T M)$ of M is parallel with respect to the connection $\bar{\nabla}$ of \bar{M}, then the Ricci type tensor $R^{(0,2)}$ is a symmetric Ricci tensor on M.
- If M is an irrotational and locally symmetric space and $\operatorname{tr}(T M)$ is parallel with respect to the connection $\bar{\nabla}$ of \bar{M}, then M is a space of constant curvature 0 and the vector field ζ of \bar{M} is normal to M.

[^0]
2. Half lightlike submanifolds

An odd dimensional semi-Riemannian manifold \bar{M} is said to be an indefinite Kenmotsu manifold $[4,6,8]$ if there exists a structure $(J, \zeta, \theta, \bar{g})$, where J is a $(1,1)$-type tensor field, ζ is a vector field which called the characteristic vector field, θ is a 1-form and \bar{g} is the semi-Riemannian metric on \bar{M} such that

$$
\begin{gather*}
J^{2} X=-X+\theta(X) \zeta, \quad J \zeta=0, \quad \theta \circ J=0, \quad \theta(\zeta)=1 \tag{2.1}\\
\theta(X)=\bar{g}(\zeta, X), \quad \bar{g}(J X, J Y)=\bar{g}(X, Y)-\theta(X) \theta(Y) \\
\bar{\nabla}_{X} \zeta=-X+\theta(X) \zeta \tag{2.2}\\
\left(\bar{\nabla}_{X} J\right) Y=-\bar{g}(J X, Y) \zeta+\theta(Y) J X \tag{2.3}
\end{gather*}
$$

for any vector fields X, Y on \bar{M}, where $\bar{\nabla}$ is the Levi-Civita connection of \bar{M}.
A submanifold M of a semi-Riemannian manifold \bar{M} of codimension 2 is called a half lightlike submanifold if the radical distribution $\operatorname{Rad}(T M)=$ $T M \cap T M^{\perp}$ of M is a vector subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$ of rank 1 . Then there exist complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, called the screen and co-screen distribution on M, such that

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{o r t h} S\left(T M^{\perp}\right) \tag{2.4}
\end{equation*}
$$

where the symbol $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Let ξ be a section on $\operatorname{Rad}(T M)$. Choose $L \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ as a unit vector field with $\bar{g}(L, L)= \pm 1$. In this paper we may assume that $\bar{g}(L, L)=1$ without loss of generality. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \bar{M}$. Certainly ξ and L belong to $\Gamma\left(S(T M)^{\perp}\right)$. Then we have the following decomposition

$$
S(T M)^{\perp}=S\left(T M^{\perp}\right) \oplus_{\text {orth }} S\left(T M^{\perp}\right)^{\perp}
$$

where $S\left(T M^{\perp}\right)^{\perp}$ is the orthogonal complementary to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$. For any null section ξ of $\operatorname{Rad}(T M)$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined null vector field $N \in \Gamma(l \operatorname{tr}(T M))$ satisfying

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=\bar{g}(N, L)=0, \forall X \in \Gamma(S(T M)) \tag{2.5}
\end{equation*}
$$

We call $N, \operatorname{ltr}(T M)$ and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} l t r(T M)$ the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to $S(T M)$ respectively. Thus $T \bar{M}$ is decomposed as follows:

$$
\begin{align*}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \tag{2.6}\\
& =\{\operatorname{Rad}(T M) \oplus l \operatorname{lr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) .
\end{align*}
$$

Let P be the projection morphism of $T M$ on $S(T M)$ with respect to the first equation of the decompositions (2.4) [denote $\left.(2.4)_{1}\right]$. Then the local Gauss
and Weingarten formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L \tag{2.7}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L \tag{2.8}\\
& \bar{\nabla}_{X} L=-A_{L} X+\phi(X) N \tag{2.9}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{2.10}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi, \forall X, Y \in \Gamma(T M), \tag{2.11}
\end{align*}
$$

where ∇ and ∇^{*} are induced linear connections on $T M$ and $S(T M)$ respectively, B and D are called the local second fundamental forms of M, C is called the local second fundamental form on $S(T M) . A_{N}, A_{\xi}^{*}$ and A_{L} are linear operators on $T M$ and τ, ρ and ϕ are 1-forms on $T M$. Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free, and B and D are symmetric. From the facts $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, L\right)$ for all $X, Y \in \Gamma(T M)$, we know that B and D are independent of the choice of a screen distribution and satisfy

$$
\begin{equation*}
B(X, \xi)=0, \quad D(X, \xi)=-\phi(X), \forall X \in \Gamma(T M) \tag{2.12}
\end{equation*}
$$

Replacing Y by ξ to (2.7) and using (2.11) and (2.12), we have

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi-\phi(X) L, \forall X \in \Gamma(T M) \tag{2.13}
\end{equation*}
$$

The induced connection ∇ of M is not metric and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{2.14}
\end{equation*}
$$

for all $X, Y, Z \in \Gamma(T M)$, where η is a 1-form on $T M$ such that

$$
\begin{equation*}
\eta(X)=\bar{g}(X, N), \forall X \in \Gamma(T M) \tag{2.15}
\end{equation*}
$$

But the connection ∇^{*} on $S(T M)$ is metric. The above three local second fundamental forms are related to their shape operators by

$$
\begin{array}{lc}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0, \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0, \\
D(X, P Y)=g\left(A_{L} X, P Y\right), & \bar{g}\left(A_{L} X, N\right)=\rho(X), \\
D(X, Y)=g\left(A_{L} X, Y\right)-\phi(X) \eta(Y), \forall X, Y \in \Gamma(T M) . \tag{2.19}
\end{array}
$$

Denote by \bar{R} and R the curvature tensors of the connections $\bar{\nabla}$ and ∇ respectively. Using the local Gauss-Weingarten formulas (2.4) $\sim(2.6)$ and (2.19), we have the Gauss-Codazzi equations for M, for all $X, Y, Z \in \Gamma(T M)$:

$$
\begin{align*}
& \bar{R}(X, Y) Z \tag{2.20}\\
= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \\
& +D(X, Z) A_{L} Y-D(Y, Z) A_{L} X \\
& +\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z)\right. \\
& \quad+\phi(X) D(Y, Z)-\phi(Y) D(X, Z)\} N, \\
& +\left\{\left(\nabla_{X} D\right)(Y, Z)-\left(\nabla_{Y} D\right)(X, Z)+\rho(X) B(Y, Z)-\rho(Y) B(X, Z)\right\} L,
\end{align*}
$$

(2.21) $\bar{R}(X, Y) N$

$$
\begin{aligned}
= & -\nabla_{X}\left(A_{N} Y\right)+\nabla_{Y}\left(A_{N} X\right)+A_{N}[X, Y] \\
& +\tau(X) A_{N} Y-\tau(Y) A_{N} X+\rho(X) A_{L} Y-\rho(Y) A_{L} X \\
& +\left\{B\left(Y, A_{N} X\right)-B\left(X, A_{N} Y\right)+2 d \tau(X, Y)+\phi(X) \rho(Y)-\phi(Y) \rho(X)\right\} N \\
& +\left\{D\left(Y, A_{N} X\right)-D\left(X, A_{N} Y\right)+2 d \rho(X, Y)+\rho(X) \tau(Y)-\rho(Y) \tau(X)\right\} L,
\end{aligned}
$$

$$
\begin{align*}
& \bar{R}(X, Y) \tag{2.22}\\
= & -\nabla_{X}\left(A_{L} Y\right)+\nabla_{Y}\left(A_{L} X\right)+A_{L}[X, Y]+\phi(X) A_{N} Y-\phi(Y) A_{N} X \\
& +\left\{B\left(Y, A_{L} X\right)-B\left(X, A_{L} Y\right)+2 d \phi(X, Y)+\tau(X) \phi(Y)\right. \\
& -\tau(Y) \phi(X)\} N .
\end{align*}
$$

Using (2.10) and (2.11), for all $X, Y \in \Gamma(T M)$, we obtain

$$
\begin{align*}
& R(X, Y) \xi \tag{2.23}\\
= & -\nabla_{X}^{*}\left(A_{\xi}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi}^{*} X\right)+A_{\xi}^{*}[X, Y]-\tau(X) A_{\xi}^{*} Y \\
& +\tau(Y) A_{\xi}^{*} X+\left\{C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right)-2 d \tau(X, Y)\right\} \xi .
\end{align*}
$$

The induced Ricci type tensor $R^{(0,2)}$ of M is defined by

$$
R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\}, \forall X, Y \in \Gamma(T M)
$$

In general, $R^{(0,2)}$ is not symmetric [1, 2]. A tensor field $R^{(0,2)}$ of M is called its induced Ricci tensor of M if it is symmetric. It is well-known that $R^{(0,2)}$ is symmetric if and only if the 1 -form τ is closed, i.e., $d \tau=0$ on any $\mathcal{U} \subset M$ [2].

3. Main results

Theorem 3.1. Let M be a half lightlike submanifold of an indefinite Kenmotsu manifold \bar{M}. Then the 1 -form θ is closed, i.e., $d \theta=0$, on $T M$.

Proof. From the decomposition (2.6) of $T \bar{M}, \zeta$ is decomposed by

$$
\begin{equation*}
\zeta=W+m N+n L \tag{3.1}
\end{equation*}
$$

where W is a smooth vector field on M and $m=\theta(\xi)$ and $n=\theta(L)$ are smooth functions. Substituting (3.1) in (2.2) and using (2.8) and (2.9), we have

$$
\begin{align*}
& \nabla_{X} W=-X+\theta(X) W+m A_{N} X+n A_{L} X \tag{3.2}\\
& X m+m \tau(X)+n \phi(X)+B(X, W)=m \theta(X) \tag{3.3}\\
& X n+m \rho(X)+D(X, W)=n \theta(X), \forall X \in \Gamma(T M) \tag{3.4}
\end{align*}
$$

Substituting (3.3) and (3.4) into the following two equations
$[X, Y] m=X(Y m)-Y(X m),[X, Y] n=X(Y n)-Y(X n), \forall X, Y \in \Gamma(T M)$, and using (2.20), (2.21), (2.22), (3.1), (3.3), (3.4), we have respectively

$$
\begin{equation*}
2 m d \theta(X, Y)=\bar{g}(\bar{R}(X, Y) \zeta, \xi), 2 n d \theta(X, Y)=\bar{g}(\bar{R}(X, Y) \zeta, L) \tag{3.5}
\end{equation*}
$$

Substituting (3.2) into $R(X, Y) W=\nabla_{X} \nabla_{Y} W-\nabla_{Y} \nabla_{X} W-\nabla_{[X, Y]} W$ and using (2.20) $\sim(2.22),(3.2) \sim(3.5)$ and the fact that ∇ is torsion-free, we have

$$
\begin{equation*}
\bar{R}(X, Y) \zeta=\theta(X) Y-\theta(Y) X+2 d \theta(X, Y) \zeta, \forall X, Y \in \Gamma(T M) \tag{3.6}
\end{equation*}
$$

Taking the scalar product with ζ to (3.6) and using the fact $\bar{g}(\bar{R}(X, Y) \zeta, \zeta)=0$ and (2.1), we show that $d \theta=0$ on $T M$. Thus we have our assertion.

Theorem 3.2. Let M be a locally symmetric half lightlike submanifold of an indefinite Kenmotsu manifold \bar{M}. If the transversal vector bundle $\operatorname{tr}(T M)$ is parallel with respect to the connection $\bar{\nabla}$ on \bar{M}, then the tensor field $R^{(0,2)}$ is a symmetric Ricci tensor on M and the curvature tensor R of M is given by

$$
R(X, Y) Z=n \phi(Z)\{\eta(X) Y-\eta(Y) X\}, \quad \forall X, Y, Z \in \Gamma(T M)
$$

Proof. As $\operatorname{tr}(T M)$ is parallel with respect to $\bar{\nabla}$ and $\operatorname{tr}(T M)=\operatorname{Span}\{N, L\}$, by (2.8) and (2.9) we have $A_{N}=A_{L}=0$. Due to (2.17) and (2.18), we also have $C=\rho=0$. Replacing X by ξ to $(2.18)_{1}$ and using $(2.12)_{2}$, we show that $\phi(P X)=0$, i.e., $\phi=0$ on $S(T M)$. Substituting (3.1) into $\bar{R}(X, Y) \zeta$ and using (2.20), (2.21) and (2.22), for all $X, Y \in \Gamma(T M)$, we have

$$
\bar{R}(X, Y) \zeta=R(X, Y) W+\bar{g}(\bar{R}(X, Y) \zeta, \xi) N+\bar{g}(\bar{R}(X, Y) \zeta, L) L
$$

From this equation, (3.5) and (3.6) with $d \theta=0$, we obtain

$$
\begin{equation*}
R(X, Y) W=\theta(X) Y-\theta(Y) X, \quad \forall X, Y \in \Gamma(T M) \tag{3.7}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\theta(Y)=g(Y, \zeta)$ and using (2.2) and (2.6), we have

$$
\begin{equation*}
\left(\nabla_{X} \theta\right)(Y)=l B(X, Y)+n D(X, Y)-g(X, Y)+\theta(X) \theta(Y) \tag{3.8}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$, where we set $l=\bar{g}(\zeta, N)$. Applying ∇_{Z} to (3.7) and using M is locally symmetric, we have

$$
R(X, Y) \nabla_{Z} W=\left(\nabla_{Z} \theta\right)(X) Y-\left(\nabla_{Z} \theta\right)(Y) X, \forall X, Y, Z \in \Gamma(T M)
$$

Substituting (3.2) and (3.8) in this equation and using (3.7), we obtain

$$
\begin{align*}
R(X, Y) Z= & \{g(X, Z)-l B(X, Z)-n D(X, Z)\} Y \tag{3.9}\\
& -\{g(Y, Z)-l B(Y, Z)-n D(Y, Z)\} X
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Replacing Z by ξ to (3.9) and using (2.12), we have

$$
\begin{equation*}
R(X, Y) \xi=n\{\phi(X) Y-\phi(Y) X\}, \quad \forall X, Y \in \Gamma(T M) . \tag{3.10}
\end{equation*}
$$

Taking the scalar product with N to (2.23) and (3.10) respectively and then, comparing this two results, we have

$$
\begin{equation*}
2 d \tau(X, Y)=n\{\phi(Y) \eta(X)-\phi(X) \eta(Y)\}, \quad \forall X, Y \in \Gamma(T M) . \tag{3.11}
\end{equation*}
$$

Due to (2.19), we have $D(X, Y)=-\phi(X) \eta(Y)$ for all $X, Y \in \Gamma(T M)$. As D is symmetric, we get $\phi(X) \eta(Y)-\phi(Y) \eta(X)=0$. From this result and (3.11),
we have $d \tau=0$ on $T M$. Thus $R^{(0,2)}$ is a symmetric Ricci tensor on M. From (2.20), (2.21), (3.9) and the facts $d \tau=0$ and $D(X, Y)=-\phi(X) \eta(Y)$, we have

$$
\begin{align*}
0 & =\bar{g}(\bar{R}(X, Y) N, Z)=-\bar{g}(\bar{R}(X, Y) Z, N)=-\bar{g}(R(X, Y) Z, N) \tag{3.12}\\
& =\{g(Y, Z)-l B(Y, Z)\} \eta(X)-\{g(X, Z)-l B(X, Z)\} \eta(Y)
\end{align*}
$$

for all $X, Y, Z \in \Gamma(T M)$. Replacing Y by ξ to (3.12) and using (2.12), we get

$$
\begin{equation*}
g(X, Y)=l B(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.13}
\end{equation*}
$$

Substituting (3.13) into (3.9) and using $D(X, Z)=-\phi(Z) \eta(X)$, we have

$$
\begin{equation*}
R(X, Y) Z=n \phi(Z)\{\eta(X) Y-\eta(Y) X\}, \quad \forall X, Y, Z \in \Gamma(T M) \tag{3.14}
\end{equation*}
$$

Definition 1. A half lightlike submanifold M is said to be irrotational [3, 7] if $\bar{\nabla}_{X} \xi \in \Gamma(T M)$ for any $X \in \Gamma(T M)$. From (2.7) and (2.12), we show that this definition is equivalent to $D(X, \xi)=0=\phi(X)$ for all $X \in \Gamma(T M)$.

Theorem 3.3. Let M be a locally symmetric irrotational half lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} such that $\operatorname{tr}(T M)$ is parallel with respect to $\bar{\nabla}$. Then M is a space of constant curvature 0 and the vector field ζ of \bar{M} is normal to M.

Proof. If M is irrotational, we have $\phi=0$ on $T M$. Thus we have $R(X, Y) Z=0$ for all $X, Y, Z \in \Gamma(T M)$ due to (3.14). Therefore M is a space of constant curvature 0 . From (2.19), we have $D=0$ on $T M$. Replacing Z by W to (3.9) and then, comparing this result with (3.7) and using the facts $D=0$ and $\theta(X)=g(X, W)+m \eta(X)$ on $T M$, we have

$$
\{m \eta(X)+l B(X, W)\} Y=\{m \eta(Y)+l B(Y, W)\} X
$$

Replacing Y by ξ to this and using (2.12) and $X=P X+\eta(X) \xi$, we have

$$
m P X=l B(X, W) \xi, \forall X \in \Gamma(T M)
$$

The left term of this equation belongs to $S(T M)$ and the right term belongs to $T M^{\perp}$. This imply $m P X=0$ and $l B(X, W)=0$ for all $X \in \Gamma(T M)$. From the first equation of this results we deduce to $m=0$. Replacing Y by W to (3.13) and using $l B(X, W)=0$, we have $g(X, W)=0$ for all $X \in \Gamma(T M)$. This implies $W=l \xi$. Thus the vector field ζ is decomposed by $\zeta=l \xi+n L$. This implies that ζ is normal to M.

Definition 2. A vector field X on \bar{M} is called a conformal Killing vector field $[5,9]$ if $\overline{\mathcal{L}}_{X} \bar{g}=-2 \delta \bar{g}$, where δ is a non-vanishing smooth function on \bar{M} and $\overline{\mathcal{L}}_{X}$ denotes the Lie derivative on \bar{M} with respect to X. A distribution \mathcal{G} on \bar{M} is said to be a conformal Killing distribution on \bar{M} if each vector field belonging to \mathcal{G} is a conformal Killing vector field.
Note 1 [5]. Using (2.9) and (2.19), for all $X, Y \in \Gamma(T M)$, we have

$$
\begin{aligned}
& \bar{g}\left(\bar{\nabla}_{X} L, Y\right)=-g\left(A_{L} X, Y\right)+\phi(X) \eta(Y)=-D(X, Y), \\
& \left(\overline{\mathcal{L}}_{L} \bar{g}\right)(X, Y)=\bar{g}\left(\bar{\nabla}_{X} L, Y\right)+\bar{g}\left(X, \bar{\nabla}_{Y} L\right)=-2 D(X, Y) .
\end{aligned}
$$

Thus $S\left(T M^{\perp}\right)$ is a conformal Killing distribution if and only if D satisfies

$$
\begin{equation*}
D(X, Y)=\delta g(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{3.15}
\end{equation*}
$$

Corollary 1. Let M be a locally symmetric half lightlike submanifold of an indefinite Kenmotsu manifold \bar{M} such that $\operatorname{tr}(T M)$ is parallel with respect to $\bar{\nabla}$. If $S\left(T M^{\perp}\right)$ is a conformal Killing distribution on \bar{M}, then M is a space of constant curvature 0 and the structure vector field ζ of \bar{M} is normal to M.

Proof. If $S\left(T M^{\perp}\right)$ is a conformal Killing distribution on \bar{M}, then, from $(2.12)_{2}$ and (3.15), we have $\phi=0$ on $T M$. By Theorem 3.3, we have our assertion.

References

[1] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[2] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121-161.
[3] , Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[4] D. H. Jin, The curvatures of lightlike hypersurfaces in an indefinite Kenmotsu manifold, Balkan Journal of Geometry and its Application 17 (2012), no. 2, 49-57.
[5] , Einstein half lightlike submanifolds with special conformalities, to appear in Bull. Korean Math. Soc.
[6] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. 21 (1972), 93-103.
[7] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
[8] R. Shankar Gupta and A. Sharfuddin, Lightlike submanifolds of indefinite Kenmotsu manifold, Int. J. Contemp. Math. Sci. 5 (2010), no. 9-12, 475-496.
[9] K. Yano, Integrable Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
Department of Mathematics
Dongguk University
Kyonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received March 29, 2011; Revised March 21, 2012.
 2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. locally symmetric, irrotational, half lightlike submanifolds, indefinite Kenmotsu manifold .

