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A NEW EXTENSION ON THE HARDY-HILBERT

INEQUALITY

Yu Zhou and Mingzhe Gao

Abstract. A new Hardy-Hilbert type integral inequality for double se-
ries with weights can be established by introducing a parameter λ (with

λ > 1 −

2
pq

) and a weight function of the form x
1− 2

r (with r > 1). And

the constant factors of new inequalities established are proved to be the
best possible. In particular, for case r = 2, a new Hilbert type inequality
is obtained. As applications, an equivalent form is considered.

1. Introduction

Let {an} and {bn} be non-negative sequences of real numbers, 1
p + 1

q = 1

and p > 1. If
∑

∞

n=1 a
p
n < + ∞ and

∑

∞

n=1 b
q
n < + ∞, then

(1.1)

∞
∑

m=1

∞
∑

n=1

(

ln m
n

)

ambn

m− n
≤

(

π

sin π
p

)2(
∞
∑

n=1

apn

)
1
p
(

∞
∑

n=1

bqn

)
1
q

and

(1.2)

∞
∑

m=1

∞
∑

n=1

ambn

m+ n
≤

π

sin π
p

(

∞
∑

n=1

apn

)
1
p
(

∞
∑

n=1

bqn

)
1
q

,

where the constant factors ( π
sin π

p

)2 in (1.1) and π
sin π

p

in (1.2) are the best

possible. And the equalities in (1.1) and (1.2) hold if and only if {an}, or {bn}
is a zero-sequence. They are the famous Hardy-Hilbert inequalities (see [6]),

Owing to the importance of the Hardy-Hilbert inequality in analysis and
applications, some mathematicians have been studying them. In particular,
some excellent results of (1.2) appear in a lot of the articles (such as [1, 2, 3, 4, 8]
etc.). However, the research articles of (1.1) are few. The purpose of the
present paper is to establish an extension of (1.1), and to prove the constant
factor to be the best possible. And then some important and especial results
are enumerated, and an equivalent form is considered.
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For convenience, we introduce some notations. Let 1
p + 1

q = 1, p > 1 and

a = 2
pq . Define a function by

(1.3) f(x) =

{

ln(nx)
(nx)λ−1

(

n
(nx)a

)

, if x 6= 1
n ,

1
λ , if x = 1

n ,

where n is a positive integer, λ > 1 − a and x ∈ (0,+ ∞). It is easy to
verify that f(x) is continuous in (0,+ ∞). We stipulate that {an} and {bn}
be two non-negative sequences of real numbers. These notations will be used
frequently throughout the paper.

2. Some lemmas

In order to prove our main results, we need the following lemmas.

Lemma 2.1. Let f(x) be a function by (1.3). Then f(x) ↓ 0.

Proof. Taking the derivative forf(x), it is easy to deduce that

(2.1) f ′(x) ≤ 0.

Hence the result is obtained at once. �

Lemma 2.2. If substituting y for n in (1.3), define a function by

(2.2) g(y) =
y ln(xy)

(xy)a((xy)λ − 1)
,

then when y is sufficiently large, g(y) ↓ 0.

Proof. Taking the derivative for g(y), it is easy to deduce that g′(y) < 0, when
y is sufficiently large. It follows that lemma is true. �

Lemma 2.3. Let 0 < b < 1. Then

(2.3)

∫

∞

0

lnu

u− 1

(

1

u

)b

du =

(

π

sin (bπ)

)2

.

Proof. Let Re α > Re β > 0. It is known from the paper [5] and [7] that

∫

∞

−∞

xeβx

eαx − 1
dx =

(

π

α sin βπ
α

)2

.

Substituting et for u in (2.3), it is easy to deduce that

∫

∞

0

lnu

u− 1

(

1

u

)b

du =

∫ +∞

−∞

te(1−b)t

et − 1
dt

=

(

π

sin (1− b)π

)2

=

(

π

sin(bπ)

)2

.
�
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Lemma 2.4. Let n be a positive integer. Define a function by

(2.4) ω(λ, n) =

∞
∑

m=1

lnmn

(mn)λ − 1

(

n

(mn)a

)

.

Then

(2.5) ω(λ, n) ≤ C2
λ,

where Cλ is defined by

(2.6) Cλ =
π

λ sin
(

1
λ (1− a) π

) .

Proof. It is known from Lemma 2.1 that f(x) ↓ 0. Hence we have

ω(λ, n) =

∞
∑

m=1

lnmn

(mn)λ − 1

(

n

(nm)a

)

≤

∫

∞

0

f(x)dx

=

∫

∞

0

lnnx

(nx)λ − 1

(

n

(nx)a

)

dx.

Substituting u for (nx)λ, and noticing that a = 2
pq ≤ 1

2 . In fact, based on AG

inequality we have
√

1
pq ≤ 1

2

(

1
p + 1

q

)

= 1
2 . And owing to λ > 1 − a, we can

obtain 1− 1
λ(1 − a) > 0. And then using (2.3), it is easy to deduce that

∫

∞

0

lnnx

(nx)λ − 1

(

n

(nx)a

)

dx =
1

λ2

∫

∞

0

lnu

u− 1

(

1

u

)1− 1
λ
(1−a)

du

=

(

π

λ sin
(

1
λ (1− a)π

)

)2

= C2
λ.

It follows that the inequality (2.5) is valid. �

Lemma 2.5. Let f(x) be a function by (1.3). Define a function by

(2.7) ϕ(n) =

∫ 1

0

f(x)dx−
1

2
f(1)−R(n),

where R(n) =
∫

∞

1 ρ(x)f ′(x)dx and that ρ(x) = {x} − 1
2 . Then

ϕ(n) > 0 and ϕ(n) → 0 (n → ∞).

Proof. Applying Euler-Maclaurin summation formula to ω(λ, n) and Lemma
2.4, we have

(2.8)

ω(λ, n) =

∫

∞

1

f(x)dx +
1

2
f(1) +

∫

∞

1

ρ(x)f ′(x)dx

=

∫

∞

0

f(x)dx− ϕ(n) = C2
λ − ϕ(n),
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where ϕ(n) is a function defined by (2.7). �

At first, based on (2.5) and (2.8), we obtain ϕ(n) > 0.

Next, it follows from Lemma 2.2 that the integral
∫ 1

0 f(x)dx → 0(n → ∞).
Clearly f(1) > 0 and f(1) → 0 (n → ∞).

It is known from (2.1) that f ′(x) < 0, and it is obvious that ρ(x) ≤ 0. So
we have R(n) ≥ 0. It follows that ϕ(n) → 0 (n → ∞).

3. Statement of main results

Theorem 3.1. Let {an} and {bn} be two non-negative sequences of real num-

bers, 1
p + 1

q = 1, p > 1 and λ > 1 − a. If
∑

∞

n=1 n
1− 2

p apn < + ∞ and
∑

∞

n=1 n
1− 2

q bqn < + ∞, then

(3.1)

∞
∑

m=1

∞
∑

n=1

(lnmn) ambn

(mn)λ − 1
≤ C2

λ

(

∞
∑

n=1

n1− 2
p apn

)
1
p
(

∞
∑

n=1

n1− 2
q bqn

)
1
q

,

where Cλ is defined by (2.6). And the constant factor C2
λ in (3.1) is the best

possible. And that the equality in (3.1) holds if and only if {an}, or {bn} is a

zero-sequence.

When λ = 1, C1 is denoted by C. It is known from (2.6) that C = π
sin(aπ) .

Based on Theorem 3.1, the following result is obtained.

Corollary 3.1. With the assumptions as Theorem 3.1, then

(3.2)
∞
∑

m=1

∞
∑

n=1

(lnmn) ambn

mn− 1
≤

(

π

sin(aπ)

)2
(

∞
∑

n=1

n1− 2
p apn

)
1
p
(

∞
∑

n=1

n1− 2
q bqn

)
1
q

,

where the constant factor
(

π
sin(aπ)

)2

in (3.2) is the best possible. And that the

equality in (3.2) holds if and only if {an}, or {bn} is a zero-sequence.

In particular, when p = 2, a Hilbert-type inequality is gotten.

Corollary 3.2. If
∑

∞

n=1 a
2
n < + ∞ and

∑

∞

n=1 b
2
n < + ∞, then

(3.3)

∞
∑

m=1

∞
∑

n=1

(lnmn)ambn

(mn)λ − 1
≤

(

π

λ sin π
2λ

)2
(

∞
∑

n=1

a2n

)
1
2
(

∞
∑

n=1

b2n

)
1
2

,

where the constant factor
(

π
λ sin π

2λ

)2

in (3.3) is the best possible. And that the

equality in (3.3) holds if and only if {an}, or {bn} is a zero-sequence.

If p = 2 and λ = 1, then the inequality (3.3) is reduced into the following
result.
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Corollary 3.3. If
∑

∞

n=1 a
2
n < + ∞ and

∑

∞

n=1 b
2
n < + ∞, then

(3.4)

∞
∑

m=1

∞
∑

n=1

(lnmn)ambn

mn− 1
≤ π2

(

∞
∑

n=1

a2n

)
1
2
(

∞
∑

n=1

b2n

)
1
2

,

where the constant factor π2 in (3.4) is the best possible. And that the equality

in (3.4) holds if and only if {an}, or {bn}is a zero-sequence.

4. Proof of main result

In the third section, some important results are enumerated, we only need
to prove Theorem 3.1 below.

Proof of Theorem 3.1. We apply the method of the paper [9] and the Hölder
inequality to estimate the left-hand side of (3.1) as follows

(4.1)

∞
∑

m=1

∞
∑

n=1

(lnmn)ambn

(mn)λ − 1

=

∞
∑

m=1

∞
∑

n=1

(

lnmn

(mn)λ − 1

)
1
p
(

ma/q

na/p
am

)(

lnmn

(mn)λ − 1

)
1
q
(

na/p

ma/q
bn

)

≤

{

∞
∑

m=1

∞
∑

n=1

lnmn

(mn)λ − 1

(

ma(p−1)

na

)

apm

}
1
p

{

∞
∑

m=1

∞
∑

n=1

lnmn

(mn)λ − 1

(

na(q−1)

ma

)

bqn

}
1
q

(4.2)

=

{

∞
∑

m=1

ω (λ,m)map−1apm

}
1
p
{

∞
∑

n=1

ω(λ, n)naq−1bqn

}
1
q

=

{

∞
∑

n=1

ω(λ, n)n1− 2
p apn

}
1
p
{

∞
∑

n=1

ω (λ, n)n1− 2
q bqn

}
1
q

,

where the weight function ω (λ, n) is defined by (2.4). It follows from (2.5) and
(4.2) that the inequality (3.1) is valid.

If {an}, or {bn} is a zero-sequence, then the equality in (3.1) obviously holds.

If neither {an} nor {bn} is zero-sequences, then 0 <
∑

∞

n=1 n
1− 2

p apn < + ∞ and

0 <
∑

∞

n=1 n
1− 2

q bqn < + ∞.
If (4.1) takes the form of the equality, then there exist a pair of non-zero

constants c1 and c2 such that

c1
lnnm

(nm)λ − 1
apm

(

ma(p−1)

na

)

= c2
lnnm

(nm)λ − 1
bqn

(

na(q−1)

ma

)

.
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Hence there exists a non-zero constant c0 such that

c1m
2
q
−1m apm = c2 n

2
p
−1nbqn = c0.

Without loss of generality, we suppose that c1 6= 0, then

m
2
q
−1m apm = m1− 2

pm apm =
c0

c1
.

Hence we have
∞
∑

m=1

m
2
q
−1apm =

∞
∑

n=1

n1− 2
p apn =

c0

c1

∞
∑

n=1

1

n
.

This contradicts that 0 <
∑

∞

n=1 n
1− 2

p apn < + ∞. So it is impossible to take
the equality in (4.1). It shows that it is also impossible to take the equality in
(3.1), if neither {an} nor {bn} is zero-sequences.

It remains to need only to show that the constant factor C2
λ in (3.1) is the

best possible.

For arbitrarily small ε > 0, define two sequences by ãm = m−
2+qε

pq and

b̃n = n−
2+pε

pq . Since the sequence {ãm} is monotonously decreasing, we have

1

ε
=

∫

∞

1

x−1−εdx <

∞
∑

m=1

m−1−ε =

∞
∑

m=1

m1− 2
pmp(− 2

pq
−

ε
p
)

= 1 +

∞
∑

m=2

m1− 2
p ãpm < 1 +

∫

∞

1

x−1−εdx = 1 +
1

ε
.

Similarly,

1

ε
<

∞
∑

n=1

n1− 2
q b̃qn < 1 +

1

ε
.

Hence we can write
∞
∑

m=1

m1− 2
p ãpm =

1

ε
+ o(1) and

∞
∑

n=1

n1− 2
q b̃2n =

1

ε
+ o(1) (ε → 0).

If C2
λ is not the best possible, then there exists a constant C > 0 such that

C < C2
λ, and

S(ã, b̃) =

∞
∑

m=1

∞
∑

n=1

(lnmn)ãmb̃n

(mn)λ − 1
≤ C

(

∞
∑

m=1

m1− 2
p ãpm

)
1
2
(

∞
∑

n=1

n1− 2
q b̃qn

)
1
2

=
C

ε
{1 + ◦(1)} (ε → 0).(4.3)

On the other hand, without loss of generality, we may assume that p ≥ q > 1
and r = 1

q − 1
p . It is obvious that 0 ≤ r < 1. Hence we have

S(ã, b̃) =

∞
∑

m=1

∞
∑

n=1

(lnmn)m−
2+qε

pq n−
2+pε

pq

(mn)λ − 1
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=

∞
∑

n=1

(

∞
∑

m=1

(lnmn)

(mn)λ − 1
m−

2+qε

pq

)

n−
2+pε

pq

=

∞
∑

n=1

(

∞
∑

m=1

(lnmn)

(mn)λ − 1

(

n

(mn)(a+
ε
p
)

))

n−1−rε

>

∞
∑

n=1

(

∞
∑

m=1

(lnmn)

(mn)λ − 1

(

n

(mn)(a+
ε
p
)

))

n−1−ε.(4.4)

When ε is sufficiently small, it is known from (2.4) that
∞
∑

n=1

(lnmn)

(mn)λ − 1

(

m

(mn)a+
ε
p

)

=

∞
∑

m=1

(lnmn)

(mn)λ − 1

(

n

(mn)a+
ε
p

)

= ω(λ, n) + ◦̃(1) (ε → 0).(4.5)

It follows from (2.8), (4.4) and (4.5) that

S(ã, b̃) >
∞
∑

n=1

(ω(λ, n) + ◦̃(1))n−1−ε =
∞
∑

n=1

{

C2
λ − (ϕ(n)− ◦̃(1))

}

n−1−ε

= C2
λ

∞
∑

n=1

n−1−ε −

∞
∑

n=1

(ϕ(n) − ◦̃(1))n−1−ε.(4.6)

Because the sequence {n−1−ε} is monotonously decreasing, it follows from (4.6)
that

S(ã, b̃) > C2
λ

∫

∞

1

x−1−εdx−

∞
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε

=
C2

λ

ε
−

∞
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε (ε → 0).(4.7)

Below, we will show that the series
∑

∞

n=1 (ϕ(n) − ◦̃(1))n−1−ε is bounded.
In fact, it is known from Lemma 2.5 that ϕ(n) → 0(n → ∞). Therefore
there exists a positive integer n0 such that |ϕ(n)− ◦̃(1)| < ε, when n > n0.
Consequently, we have

∞
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε

=

n0
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε +

∞
∑

n=n0+1

(ϕ(n) − ◦̃(1))n−1−ε

<

n0
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε +

∞
∑

n=n0+1

εn−1−ε

<

n0
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε + ε

∫

∞

n0

x−1−εdx
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=

n0
∑

n=1

(ϕ(n)− ◦̃(1))n−1−ε +
1

nε
0

(ε → 0).(4.8)

It shows that the series
∑

∞

n=1 (ϕ(n) − ◦̃(1))n−1−ε is bounded. Based on (4.7)
and (4.8), we obtain

(4.9) S(ã, b̃) >
C2

λ

ε
−O(1) (ε → 0).

Therefore when n is sufficiently large and ε is sufficiently small, it follows from
(4.9) that

(4.10) S(ã, b̃) >
C2

λ

ε
(1− ◦(1)) (n → ∞ and ε → 0).

The inequality (4.10) contradicts the inequality (4.3). This shows the constant
factor C2

λ in (3.1) is the best possible. Thus the proof of theorem is completed.
�

5. Applications

As application, we will build an equivalent form of (3.1).

Theorem 5.1. Let 1
p + 1

q = 1, p > 1 and λ > 1− a. If
∑

∞

n=1 n
1− 2

p apn < + ∞,

then

(5.1)

∞
∑

n=1

n(1− 2
p
)(p−1)

{

∞
∑

m=1

ln(mn)

(mn)λ − 1
am

}p

≤ C
2p
λ

∞
∑

n=1

n1− 2
p apn,

where Cλ is defined by (2.6). And the constant factor C
2p
λ in (5.1) is the best

possible. And the equality in (5.1) holds if and only if {an} is a zero-sequence.

And inequality (5.1) is equivalent to (3.1).

Proof. Let bn =
(

n(1− 2
p
)∑∞

m=1
ln(mn)

(mn)λ−1am

)p−1

. Then by (3.1), we have

∞
∑

n=1

n(1− 2
p
)(p−1)

{

∞
∑

m=1

ln(mn)

(mn)λ − 1
am

}p

=

∞
∑

m=1

∞
∑

n=1

ln(mn)

(mn)λ − 1
ambn

≤ C2
λ

(

∞
∑

n=1

n1− 2
p apn

)
1
p
(

∞
∑

n=1

n1− 2
q bqn

)
1
q

= C2
λ

(

∞
∑

n=1

n1− 2
p apn

)
1
p
{

∞
∑

n=1

n(1−
2
p )(p−1)

(

∞
∑

m=1

ln(mn)

(mn)λ − 1
am

)p} 1
q

.(5.2)

The inequality (5.1) follows from (5.2) after some simplifications.
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On the other hand, assume that the inequality (5.1) is valid. Apply in turn
the Hölder inequality and (5.1), we have

∞
∑

m=1

∞
∑

n=1

ln(mn)

(mn)λ − 1
ambn

=

∞
∑

n=1

{(

n
1
p (1−

2
p )(p−1)

∞
∑

m=1

ln(mn)

(mn)λ − 1
am

)

(

n−
1
p(1−

2
p)(p−1)bn

)

}

≤

{

∞
∑

n=1

n(1−
2
p )(p−1)

(

∞
∑

m=1

ln(mn)

(mn)λ − 1
am

)p} 1
p
{

∞
∑

n=1

n
2
p
−1bqn

}
1
q

≤

(

C
2p
λ

∞
∑

n=1

n1− 2
p apn

)
1
p
(

∞
∑

n=1

n1− 2
q bqn

)
1
q

= C2
λ

(

∞
∑

n=1

n1− 2
p apn

)
1
p
(

∞
∑

n=1

n1− 2
q bqn

)
1
q

.(5.3)

If the constant factor C
2p
λ in (5.1) is not the best possible, then it is known

from (5.3) that the constant factor C2
λ in (3.1) is also not the best possible, this

is in contradiction. Evidently, the equality in (5.1) holds if and only if {an} is
a zero-sequence. Consequently, the inequality (5.1) is equivalent to (3.1). The
proof of theorem is completed. �

Similarly, we can establish also some new inequalities which they are respec-
tively equivalent to the inequalities (3.2), (3.3) and (3.4). These are omitted
here.
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