ON ELLIPTIC CURVES WHOSE 3-TORSION SUBGROUP SPLITS AS $\mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$

Masaya Yasuda

ABSTRACT. In this paper, we study elliptic curves E over \mathbb{Q} such that the 3-torsion subgroup E[3] is split as $\mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$. For a non-zero integer m, let C_m denote the curve $x^3 + y^3 = m$. We consider the relation between the set of integral points of C_m and the elliptic curves E with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$.

1. Introduction

Let E be an elliptic curve over the field \mathbb{Q} of rational numbers. For a prime p, the p-torsion points of E are the points of finite order p in the Mordell-Weil group $E(\mathbb{Q})$. Assume that E has a 3-torsion point P. By translating P to the point (0,0), we get the Weierstrass equation of E as follows:

(1)
$$y^2 + axy + by = x^3, \ a, b \in \mathbb{Q}$$

with $\Delta(E) = b^3(a^3 - 27b) \neq 0$, where $\Delta(E)$ is the discriminant of E. For $m \in \mathbb{Z}$, let E[m] denote the *m*-torsion subgroup of E. Using the Weil-pairing $e_3 : E[3] \times E[3] \rightarrow \mu_3$, we can define a map $E[3] \rightarrow \mu_3$ by $Q \mapsto e_3(P,Q)$. Since the point P is rational over \mathbb{Q} , this map gives an exact sequence

(2)
$$0 \to \mathbb{Z}/3\mathbb{Z} \to E[3] \to \mu_3 \to 0$$

of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -modules. The purpose of this paper is to study elliptic curves E such that E[3] is split as $\mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$.

For an elliptic curve E with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$, there exists an isogeny $\phi : E \to E'$ with ker $\phi = \mu_3$. Note that the image of a 3-torsion point of E gives a 3-torsion point of E'. In this paper, we determine the Weierstrass equation of E' of the form (1). In his paper [3], Miyawaki determined all the elliptic curves of prime power conductor which have a 3-torsion point. As an application, we determine all the isogeny relations among the elliptic curves of 3-power conductor which have a 3-torsion point.

 $\bigodot 2012$ The Korean Mathematical Society

Received July 20, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 14H52; Secondary 11G05.

 $Key\ words\ and\ phrases.$ elliptic curves, torsion points, Vélu's formula.

MASAYA YASUDA

A classical question in number theory is to describe the positive integer m which can be written as the sum of two rational cubes. This leads one to study the curve $C_m : x^3 + y^3 = m$ for a non-zero integer m. We here consider the relation between the set of integral points of C_m and the elliptic curves E with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$.

2. Preliminaries

Let *E* be an elliptic curve over \mathbb{Q} given by the equation (1) and P = (0, 0). Note that the discriminant of *E* is given by $\Delta(E) = b^3(a^3 - 27b)$. Fix $Q = (x, y) \in E[3]$ with $x \neq 0$. Since 2Q = -Q, we have

(3)
$$x^3 + \frac{a^2}{3}x^2 + abx + b^2 = 0.$$

Setting $x = z - \frac{a^2}{9}$, we get

$$z^3 + pz + q = 0,$$

where

$$p = -\frac{1}{27}a^4 + ab, \ q = \frac{2}{729}a^6 - \frac{1}{9}a^3b + b^2.$$

Set $f(z) = z^3 + pz + q$ and let $\Delta(f)$ denote its discriminant defined by $-4p^3 - 27q^2$. A computation shows the following result:

Lemma 2.1.

$$\Delta(f) = -\frac{\Delta(E)^2}{27b^4}.$$

Set

$$\begin{cases} u = \sqrt[3]{-\frac{q}{2} + \sqrt{-\frac{\Delta(f)}{4 \cdot 27}}},\\ v = \sqrt[3]{-\frac{q}{2} - \sqrt{-\frac{\Delta(f)}{4 \cdot 27}}}. \end{cases}$$

Let ω be a primitive 3-th root of unity. By Caldano's formula, the solutions of the cubic equation (3) are

(4)
$$x = -\frac{a^2}{9} + u + v, \ -\frac{a^2}{9} + u\omega + v\omega^2, \ -\frac{a^2}{9} + u\omega^2 + v\omega.$$

By Lemma 2.1, we get

$$\begin{aligned} -\frac{q}{2} \pm \sqrt{-\frac{\Delta(f)}{4 \cdot 27}} &= \frac{1}{2} \left(-q \pm \frac{|\Delta(E)|}{27b^2} \right) \\ &= \frac{1}{2} \left(-q \pm \frac{|b(a^3 - 27b)|}{27} \right) \\ &= -\frac{(a^3 - 27b)^2}{27^2}, \ -\frac{a^3(a^3 - 27b)}{27^2}. \end{aligned}$$

Hence we have $u, v \in \mathbb{Q}(\sqrt[3]{a^3 - 27b})$. In particular, we have

(5)
$$u + v = -\frac{1}{9} \left(\sqrt[3]{(a^3 - 27b)^2} + a \cdot \sqrt[3]{a^3 - 27b} \right).$$

Let $\mathbb{Q}(E[3])$ denote the field generated by the points of E[3]. Taking $Q \in E[3]$ with $e_3(P,Q) = \omega$, we get a faithful representation $\rho : \operatorname{Gal}(\mathbb{Q}(E[3])/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F}_3)$ defined by

$$\begin{pmatrix} \sigma(P) \\ \sigma(Q) \end{pmatrix} = \rho(\sigma) \begin{pmatrix} P \\ Q \end{pmatrix}, \ \forall \sigma \in \operatorname{Gal}(\mathbb{Q}(E[3])/\mathbb{Q}).$$

By the exact sequence (2), we have $\rho = \begin{pmatrix} 1 & * \\ 0 & \chi \end{pmatrix}$ where χ is the cyclotomic character. We note that $\mathbb{Q}(\omega) \subseteq \mathbb{Q}(E[3])$ and the extension degree $[\mathbb{Q}(E[3]) : \mathbb{Q}]$ is divided by 3 (see [4] for details). Hence we have $\mathbb{Q}(E[3]) = \mathbb{Q}(\omega, \sqrt[3]{a^3 - 27b})$. Moreover, we have the following:

Proposition 2.2. The exact sequence (2) of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -modules is split if and only if $a^3 - 27b \in (\mathbb{Q}^{\times})^3$.

3. The Weierstrass equation of E/μ_3 and isogeny relations

Let *E* be an elliptic curve with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$. In this section, we determine the Weierstrass equation of E/μ_3 of the form (1). As an application, we determine all the isogeny relations among the elliptic curves of 3-power conductor which have a 3-torsion point.

3.1. The Weierstrass equation of E/μ_3

Let C be a subgroup of an elliptic curve E. Vélu in [5] gives an explicit formula for determining the equation of the isogeny $E \to E/C$ and the Weierstrass equation of the curve E/C. We shall review here Vélu's formula. Let E be an elliptic curve given by a Weierstrass equation

 $y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$

Let S be a set of representatives for $(C \setminus \{O\})/\{\pm 1\}$, where O is the point at infinity. We define two functions as follows: For a point Q = (x, y) on $E \setminus \{O\}$,

$$\begin{cases} g^{x}(Q) = 3x^{2} + 2a_{2}x + a_{4} - a_{1}y, \\ g^{y}(Q) = -2y - a_{1}x - a_{3}. \end{cases}$$

Set

$$t(Q) = \begin{cases} g^x(Q) & \text{if } Q = -Q \text{ on } E \\ 2g^x(Q) - a_1 g^y(Q) & \text{otherwise,} \end{cases}$$
$$u(Q) = (g^y(Q))^2,$$
$$t = \sum_{Q \in S} t(Q),$$
$$w = \sum_{Q \in S} (u(Q) + x(Q)t(Q)).$$

Then the Weierstrass equation of the elliptic curve E/C is given by

$$Y^2 + A_1 X Y + A_3 Y = X^3 + A_2 X^2 + A_4 X + A_6,$$

where $A_1 = a_1$, $A_2 = a_2$, $A_3 = a_3$, $A_4 = a_4 - 5t$, $A_6 = a_6 - (a_1^2 + 4a_2)t - 7w$. Let *E* be an elliptic curve \mathbb{Q} given the equation (1) with $a^3 - 27b = -k^3 \in$

Let *E* be an elliptic curve \mathbb{Q} given the equation (1) with $a^{\circ} - 27b = -k^{\circ} \in (\mathbb{Q}^{\times})^3$. By Proposition 2.2, we have $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$. Let $Q = (x, y) \in E[3]$ with $x = -\frac{a^2}{9} + u + v$ (see §2 for *u* and *v*). Then we can see $\mu_3 \simeq \langle Q \rangle \subseteq E[3]$. In the notation as above, we take $S = \{Q\}$ as a set of representatives for $(\mu_3 \setminus \{O\})/\{\pm 1\}$. By (5), we have

$$x = -\frac{1}{9}(a^2 + k^2 - ak) = -\frac{3b}{a+k}.$$

A computation shows that we have

$$t = -\frac{bk(a-2k)}{a+k}, \ w = \frac{3b^2k(a-3k)}{(a+k)^2},$$

Then the Weierstrass equation of the elliptic curve E/μ_3 is as follows:

$$Y^2 + aXY + bY = X^3 + A_4X + A_6,$$

where $A_4 = 5t$, $A_6 = -a^2t - 7w$. Let ϕ be the isogeny $E \to E/\mu_3$. We have

$$\phi(P) = \left(-\frac{t(a-t)}{3}, \frac{at(2a-t)}{9}\right),$$

where P = (0,0) is the 3-torsion point of E (see [5] for details). The change of variables $X \mapsto X - \frac{t(a-t)}{3}$, $Y \mapsto Y + \frac{at(2a-t)}{9}$ gives the equation

$$Y^{2} + aXY + \frac{(a+k)^{3}}{27}Y = X^{3} - k(a-k)X^{2} - \frac{k(a+k)^{3}}{27}.$$

After the change of variable $Y \mapsto Y - kX$, we obtain the equation of the form (1) as follows:

$$Y^{2} + (a - 2k)XY + \frac{(a + k)^{3}}{27}Y = X^{3}.$$

In summary, we have the following:

Proposition 3.1. Let *E* be an elliptic curve over \mathbb{Q} given by the equation (1) with $a^3 - 27b = -k^3 \in (\mathbb{Q}^{\times})^3$. Then the Weierstrass equation of the elliptic curve E/μ_3 of the form (1) is as follows:

$$E/\mu_3: Y^2 + (a-2k)XY + \frac{(a+k)^3}{27}Y = X^3.$$

3.2. Application

By applying Proposition 3.1, we determine all the isogeny relations among the elliptic curves of 3-power conductor which have a 3-torsion point. In his paper [3], Miyawaki determined all such curves. In Table 1, we list all such curves. For each curve, the data given are Miyawaki's code E^i , coefficients a, bof the equation (1), the discriminant Δ , the conductor N and the *j*-invariant j (see [3] for details).

500

TABLE 1. Elliptic curves of 3-power conductor which have a3-torsion point

E^i	a	b	Δ	N	j
E^3	0	1	-3^{3}	3^{3}	0
E^4	-6	1	-3^{5}	3^3	$-2^{15}\cdot 3\cdot 5^3$
E^5	0	3	-3^{7}	3^5	0
E^8	6	9	-3^{9}	3^3	0
E^9	0	9	-3^{11}	3^5	0

Let E be one of elliptic curves E^3 , E^8 . Since $a^3 - 27b \in (\mathbb{Q}^{\times})^3$, it follows from Proposition 2.2 that E[3] is split as $\mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$. We consider the Weierstrass equation of E/μ_3 as follows:

• In the case $E = E^3$, we have

$$E^3/\mu_3: Y^2 - 6XY + Y = X^3$$

- by Proposition 3.1. Therefore we have $E^4 = E^3/\mu_3$.
- In the case $E = E^8$, we have

$$E^8/\mu_3: Y^2 + 27Y = X^3$$

by Proposition 3.1. The change of variables $X \mapsto 9X$, $Y \mapsto 27Y$ gives the equation $Y^2 + Y = X^3$. Therefore we have $E^3 = E^8/\mu_3$.

Therefore we have

$$E^8 \sim E^3 = E^8/\mu_3 \sim E^4 = E^3/\mu_3.$$

Since the conductor is an isogeny invariant, elliptic curves E^5 , E^9 are not isogeneous to elliptic curves E^3 , E^4 , E^8 . Since rank $(E^5) = 0$ and rank $(E^9) = 1$, we see that E^5 is not isogeneous to E^9 .

Remark. We can determine all the elliptic curves E over \mathbb{Q} with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$ and $j \in \mathbb{Z}$. In his paper [1], Frey determined all the elliptic curves having a 3-torsion point with $j \in \mathbb{Z}$. In Table 2, we list all such curves of the form (1).

TABLE 2. Elliptic curves having a 3-torsion point with $j \in \mathbb{Z}$

The Weierstrass equation of the form (1)	The j -invariant
$y^2 + 2ty = x^3 \ (t \neq 0)$	0
$y^2 + 2xy + \frac{8}{27+3^n}y = x^3 \ (0 \le n \le 6)$	$3^{6-n}(1+3^{n-1})^3(1+3^{n-3})$
$y^{2} + 2xy + \frac{8}{27-3^{n}}y = x^{3} \ (0 \le n \le 6, n \ne 3)$	$3^{6-n}(1-3^{n-1})^3(3^{n-3}-1)$
$y^2 + 2xy - \frac{4}{27}y = x^3$	$2^4 3^3 5^3$

By Table 2 and Proposition 2.2, the Weierstrass equation of an elliptic curve E with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$ and $j \in \mathbb{Z}$ is either equal to

(6)
$$y^2 + k^3 y = x^3 \text{ for } k \in \mathbb{Q}^{\times}$$

or

502

(7)
$$y^2 + 2xy + \frac{1}{3}y = x^3$$

We see that an elliptic curve given by the equation (6) is isomorphic to the elliptic curve E^3 defined in Table 1. Moreover, we see that an elliptic curve given by the equation (7) is isomorphic to the elliptic curve E^8 defined in Table 1. Therefore an elliptic curve E with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$ and $j \in \mathbb{Z}$ is either equal to E^3 or E^8 .

4. Relation with the curve $x^3 + y^3 = m$

For a non-zero integer m, let C_m denote the curve defined by the equation $x^3 + y^3 = m$. In this section, we study the relation between the set $C_m(\mathbb{Z})$ of integral points of C_m and the elliptic curves E over \mathbb{Q} with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$. For an elliptic curve E with a 3-torsion point, we get the Weierstrass equation of E of the form (1) with $a, b \in \mathbb{Z}$ by doing a change of variables. In this section, we denote by E(a, b) an elliptic curve defined by the equation (1) with $a, b \in \mathbb{Z}$. By Proposition 2.2, we note that $E(a, b)[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$ if and only if $a^3 - 27b = -k^3$ for some non-zero integer k. Therefore we have $(a, k) \in C_{27b}(\mathbb{Z})$ if $E(a, b)[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$. For a non-zero integer b, we can give a map

$$\phi: C_{27b}(\mathbb{Z}) \to \{ E(a,b) \mid a \in \mathbb{Z} \text{ and } E(a,b)[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z} \}$$

defined by $\phi(\alpha, \beta) = E(\alpha, b)$ with $\alpha^3 + \beta^3 = 27b$. We note that the Weierstrass equation of $E(\alpha, b)$ given by the equation (1) is minimal if $(\alpha, \beta) \in C_{27b}(\mathbb{Z})$ with $gcd(\alpha, \beta) = 1$ (see [2, Section 1]).

We consider the condition that E(a, b) is isomorphic to E(a', b') over \mathbb{Q} with $a, b, a', b' \in \mathbb{Z}$. For an elliptic curve E over a field K given by a Weierstrass equation, we note that every isomorphism of E to another elliptic curve over K given by a Weierstrass equation can be given by a change of variables of the form $x \mapsto u^2x + r$, $y \mapsto u^3y + u^2sx + t$ with $r, s, t, u \in K$ (see [4]). Therefore we can see that

$$E(a,b) \simeq E(a',b') \iff a = ua', b = u^3b'$$
 for some $u \in \mathbb{Q}^{\times}$.

Let T denote the set of positive integers. We define an equivalence relation on the set $\coprod_{b\in T} C_{27b}(\mathbb{Z})$ as follows: For $(\alpha, \beta), \ (\alpha', \beta') \in \coprod_{b\in T} C_{27b}(\mathbb{Z})$, we define

$$(\alpha,\beta) \sim (\alpha',\beta') \iff \alpha = u\alpha', \beta = u\beta' \text{ for some } u \in \mathbb{Q}^{\times}.$$

Then we have the following:

Theorem 4.1. We have an isomorphism

$$\Phi: \coprod_{b\in T} C_{27b}(\mathbb{Z})/\sim \longrightarrow \{ elliptic \ curves \ E \ over \ \mathbb{Q} \ with \ E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z} \}$$

as sets defined by $(\alpha, \beta) \mapsto E(\alpha, b)$ for $(\alpha, \beta) \in C_{27b}(\mathbb{Z})$.

Points of C_m	Points of E_m
$P_1 = (6, -3)$	Q = (756, -20412)
$P_2 = (5, 4)$	2Q = (252, -756)
$P_3 = \left(-\frac{51}{38}, \frac{219}{38}\right)$	3Q = (513, 10935)
$P_4 = \left(-\frac{1256}{61}, \frac{1265}{61}\right)$	4Q = (15372, 1199996)
$P_5 = \left(\frac{270813}{40049}, -\frac{197646}{40049}\right)$	$5Q = \left(\frac{104436}{841}, -\frac{1062465012}{24389}\right)$
:	:
•	•

TABLE 3. P_n and nQ for some $n \ge 1$

For a non-zero integer m, we note that the curve C_m is isomorphic to an elliptic curve $E_m: Y^2 = X^3 - 432m^2,$

where

$$X = \frac{12m}{y+x}, \quad Y = 36m\frac{y-x}{y+x}.$$

Take b = 7 and m = 27b. Then the curve C_m has a point $P_1 = (6, -3)$. Let Q = (756, -20412) be a point of E_m corresponding to the point P_1 . We denote by P_n a point of C_m corresponding to the point nQ of E_m for $n \ge 1$. In Table 3, we list P_n and nQ for some $n \ge 1$. As shown in Table 3, we see that the order of the point Q is infinite by [4, Ch. 8, Corollary 7.2]. Since $P_1, P_2 \in C_{27b}(\mathbb{Z})$, the map Φ gives elliptic curves E(6,7), E(5,7). Although $P_3 \notin C_{27b}(\mathbb{Z})$, we have $P'_3 = (-51, 219) \in C_{27b'}(\mathbb{Z})$ with b' = 38b and hence the map Φ gives an elliptic curve E(-51, b'). Similarly, points P_4 and P_5 give elliptic curves E with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$ using the map Φ . Therefore we can construct infinitely many elliptic curves E over \mathbb{Q} with $E[3] \simeq \mu_3 \oplus \mathbb{Z}/3\mathbb{Z}$ in this way.

References

- G. Frey, Some remarks concerning points of finite order on elliptic curves over global fields, Ark. Mat. 15 (1977), no. 1, 1–19.
- [2] T. Hadano, Elliptic curves with a torsion point, Nagoya Math. J. 66 (1977), 99-108.
- [3] I. Miyawaki, Elliptic curves of prime power conductor with Q-rational points of finite order, Osaka J. Math. 10 (1973), 309–323.
- [4] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-Verlag, Berlin-Heidelberg New York, 1994.
- [5] J. Vélu, Isogénis entre courbs elliptiques, C. R. Acad. Sci. Paris Sér. A-B (1971), 238–241.

Fujitsu Laboratories Ltd. 4-1-1, Kamikodanaka, Nakahara-ku Kawasaki 211-8588, Japan *E-mail address*: myasuda@labs.fujitsu.com