
Commun. Korean Math. Soc. 27 (2012), No. 3, pp. 497–503
http://dx.doi.org/10.4134/CKMS.2012.27.3.497

ON ELLIPTIC CURVES WHOSE 3-TORSION SUBGROUP

SPLITS AS µ3 ⊕ Z/3Z

Masaya Yasuda

Abstract. In this paper, we study elliptic curves E over Q such that
the 3-torsion subgroup E[3] is split as µ3 ⊕ Z/3Z. For a non-zero integer
m, let Cm denote the curve x3 + y3 = m. We consider the relation
between the set of integral points of Cm and the elliptic curves E with
E[3] ≃ µ3 ⊕ Z/3Z.

1. Introduction

Let E be an elliptic curve over the field Q of rational numbers. For a prime
p, the p-torsion points of E are the points of finite order p in the Mordell-Weil
group E(Q). Assume that E has a 3-torsion point P . By translating P to the
point (0, 0), we get the Weierstrass equation of E as follows:

(1) y2 + axy + by = x3, a, b ∈ Q

with ∆(E) = b3(a3 − 27b) 6= 0, where ∆(E) is the discriminant of E. For
m ∈ Z, let E[m] denote the m-torsion subgroup of E. Using the Weil-pairing
e3 : E[3]×E[3] → µ3, we can define a map E[3] → µ3 by Q 7→ e3(P,Q). Since
the point P is rational over Q, this map gives an exact sequence

(2) 0 → Z/3Z → E[3] → µ3 → 0

of Gal(Q/Q)-modules. The purpose of this paper is to study elliptic curves E
such that E[3] is split as µ3 ⊕ Z/3Z.

For an elliptic curve E with E[3] ≃ µ3 ⊕ Z/3Z, there exists an isogeny
φ : E → E′ with kerφ = µ3. Note that the image of a 3-torsion point of
E gives a 3-torsion point of E′. In this paper, we determine the Weierstrass
equation of E′ of the form (1). In his paper [3], Miyawaki determined all the
elliptic curves of prime power conductor which have a 3-torsion point. As an
application, we determine all the isogeny relations among the elliptic curves of
3-power conductor which have a 3-torsion point.
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A classical question in number theory is to describe the positive integer m
which can be written as the sum of two rational cubes. This leads one to study
the curve Cm : x3 + y3 = m for a non-zero integer m. We here consider the
relation between the set of integral points of Cm and the elliptic curves E with
E[3] ≃ µ3 ⊕ Z/3Z.

2. Preliminaries

Let E be an elliptic curve over Q given by the equation (1) and P = (0, 0).
Note that the discriminant of E is given by ∆(E) = b3(a3 − 27b). Fix Q =
(x, y) ∈ E[3] with x 6= 0. Since 2Q = −Q, we have

(3) x3 +
a2

3
x2 + abx+ b2 = 0.

Setting x = z − a2

9 , we get

z3 + pz + q = 0,

where

p = − 1

27
a4 + ab, q =

2

729
a6 − 1

9
a3b+ b2.

Set f(z) = z3 + pz+ q and let ∆(f) denote its discriminant defined by −4p3 −
27q2. A computation shows the following result:

Lemma 2.1.

∆(f) = −∆(E)2

27b4
.

Set














u =
3

√

− q

2 +
√

−∆(f)
4·27 ,

v =
3

√

− q
2 −

√

−∆(f)
4·27 .

Let ω be a primitive 3-th root of unity. By Caldano’s formula, the solutions of
the cubic equation (3) are

(4) x = −a2

9
+ u+ v, −a2

9
+ uω + vω2, −a2

9
+ uω2 + vω.

By Lemma 2.1, we get

− q

2
±
√

−∆(f)

4 · 27 =
1

2

(

−q ± |∆(E)|
27b2

)

=
1

2

(

−q ± |b(a3 − 27b)|
27

)

= − (a3 − 27b)2

272
, −a3(a3 − 27b)

272
.
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Hence we have u, v ∈ Q( 3
√
a3 − 27b). In particular, we have

(5) u+ v = −1

9

(

3

√

(a3 − 27b)2 + a · 3

√

a3 − 27b
)

.

Let Q(E[3]) denote the field generated by the points of E[3]. Taking Q ∈
E[3] with e3(P,Q) = ω, we get a faithful representation ρ : Gal(Q(E[3])/Q) →
GL2(F3) defined by

(

σ(P )
σ(Q)

)

= ρ(σ)

(

P
Q

)

, ∀σ ∈ Gal(Q(E[3])/Q).

By the exact sequence (2), we have ρ = ( 1 ∗

0 χ ) where χ is the cyclotomic char-
acter. We note that Q(ω) ⊆ Q(E[3]) and the extension degree [Q(E[3]) : Q] is

divided by 3 (see [4] for details). Hence we have Q(E[3]) = Q(ω, 3
√
a3 − 27b).

Moreover, we have the following:

Proposition 2.2. The exact sequence (2) of Gal(Q/Q)-modules is split if and

only if a3 − 27b ∈ (Q×)3.

3. The Weierstrass equation of E/µ3 and isogeny relations

Let E be an elliptic curve with E[3] ≃ µ3 ⊕ Z/3Z. In this section, we
determine the Weierstrass equation of E/µ3 of the form (1). As an application,
we determine all the isogeny relations among the elliptic curves of 3-power
conductor which have a 3-torsion point.

3.1. The Weierstrass equation of E/µ3

Let C be a subgroup of an elliptic curve E. Vélu in [5] gives an explicit
formula for determining the equation of the isogeny E → E/C and the Weier-
strass equation of the curve E/C. We shall review here Vélu’s formula. Let E
be an elliptic curve given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let S be a set of representatives for (C \ {O})/{±1}, where O is the point at
infinity. We define two functions as follows: For a point Q = (x, y) on E \ {O},

{

gx(Q) = 3x2 + 2a2x+ a4 − a1y,
gy(Q) = −2y − a1x− a3.

Set

t(Q) =

{

gx(Q) if Q = −Q on E,
2gx(Q)− a1g

y(Q) otherwise,

u(Q) = (gy(Q))2 ,
t =

∑

Q∈S t(Q),

w =
∑

Q∈S (u(Q) + x(Q)t(Q)) .

Then the Weierstrass equation of the elliptic curve E/C is given by

Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6,
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where A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5t, A6 = a6 − (a21 + 4a2)t− 7w.
Let E be an elliptic curve Q given the equation (1) with a3 − 27b = −k3 ∈

(Q×)3. By Proposition 2.2, we have E[3] ≃ µ3 ⊕ Z/3Z. Let Q = (x, y) ∈ E[3]

with x = −a2

9 + u+ v (see §2 for u and v). Then we can see µ3 ≃ 〈Q〉 ⊆ E[3].
In the notation as above, we take S = {Q} as a set of representatives for
(µ3 \ {O})/{±1}. By (5), we have

x = −1

9
(a2 + k2 − ak) = − 3b

a+ k
.

A computation shows that we have

t = −bk(a− 2k)

a+ k
, w =

3b2k(a− 3k)

(a+ k)2
.

Then the Weierstrass equation of the elliptic curve E/µ3 is as follows:

Y 2 + aXY + bY = X3 +A4X +A6,

where A4 = 5t, A6 = −a2t− 7w. Let φ be the isogeny E → E/µ3. We have

φ(P ) =

(

− t(a− t)

3
,
at(2a− t)

9

)

,

where P = (0, 0) is the 3-torsion point of E (see [5] for details). The change of

variables X 7→ X − t(a−t)
3 , Y 7→ Y + at(2a−t)

9 gives the equation

Y 2 + aXY +
(a+ k)3

27
Y = X3 − k(a− k)X2 − k(a+ k)3

27
.

After the change of variable Y 7→ Y − kX , we obtain the equation of the form
(1) as follows:

Y 2 + (a− 2k)XY +
(a+ k)3

27
Y = X3.

In summary, we have the following:

Proposition 3.1. Let E be an elliptic curve over Q given by the equation (1)
with a3 − 27b = −k3 ∈ (Q×)3. Then the Weierstrass equation of the elliptic

curve E/µ3 of the form (1) is as follows:

E/µ3 : Y 2 + (a− 2k)XY +
(a+ k)3

27
Y = X3.

3.2. Application

By applying Proposition 3.1, we determine all the isogeny relations among
the elliptic curves of 3-power conductor which have a 3-torsion point. In his
paper [3], Miyawaki determined all such curves. In Table 1, we list all such
curves. For each curve, the data given are Miyawaki’s code Ei, coefficients a, b
of the equation (1), the discriminant ∆, the conductor N and the j-invariant
j (see [3] for details).
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Table 1. Elliptic curves of 3-power conductor which have a
3-torsion point

Ei a b ∆ N j
E3 0 1 −33 33 0
E4 -6 1 −35 33 −215 · 3 · 53
E5 0 3 −37 35 0
E8 6 9 −39 33 0
E9 0 9 −311 35 0

Let E be one of elliptic curves E3, E8. Since a3−27b ∈ (Q×)3, it follows from
Proposition 2.2 that E[3] is split as µ3 ⊕ Z/3Z. We consider the Weierstrass
equation of E/µ3 as follows:

• In the case E = E3, we have

E3/µ3 : Y 2 − 6XY + Y = X3

by Proposition 3.1. Therefore we have E4 = E3/µ3.
• In the case E = E8, we have

E8/µ3 : Y 2 + 27Y = X3

by Proposition 3.1. The change of variables X 7→ 9X, Y 7→ 27Y gives
the equation Y 2 + Y = X3. Therefore we have E3 = E8/µ3.

Therefore we have

E8 ∼ E3 = E8/µ3 ∼ E4 = E3/µ3.

Since the conductor is an isogeny invariant, elliptic curves E5, E9 are not iso-
geneous to elliptic curves E3, E4, E8. Since rank(E5) = 0 and rank(E9) = 1,
we see that E5 is not isogeneous to E9.

Remark. We can determine all the elliptic curves E over Q with E[3] ≃ µ3 ⊕
Z/3Z and j ∈ Z. In his paper [1], Frey determined all the elliptic curves having
a 3-torsion point with j ∈ Z. In Table 2, we list all such curves of the form (1).

Table 2. Elliptic curves having a 3-torsion point with j ∈ Z

The Weierstrass equation of the form (1) The j-invariant
y2 + 2ty = x3 (t 6= 0) 0

y2 + 2xy + 8
27+3n y = x3 (0 ≤ n ≤ 6) 36−n(1 + 3n−1)3(1 + 3n−3)

y2 + 2xy + 8
27−3n y = x3 (0 ≤ n ≤ 6, n 6= 3) 36−n(1− 3n−1)3(3n−3 − 1)

y2 + 2xy − 4
27y = x3 243353

By Table 2 and Proposition 2.2, the Weierstrass equation of an elliptic curve
E with E[3] ≃ µ3 ⊕ Z/3Z and j ∈ Z is either equal to

(6) y2 + k3y = x3 for k ∈ Q×
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or

(7) y2 + 2xy +
1

3
y = x3.

We see that an elliptic curve given by the equation (6) is isomorphic to the
elliptic curve E3 defined in Table 1. Moreover, we see that an elliptic curve
given by the equation (7) is isomorphic to the elliptic curve E8 defined in Table
1. Therefore an elliptic curve E with E[3] ≃ µ3 ⊕ Z/3Z and j ∈ Z is either
equal to E3 or E8.

4. Relation with the curve x3 + y3 = m

For a non-zero integer m, let Cm denote the curve defined by the equation
x3 + y3 = m. In this section, we study the relation between the set Cm(Z) of
integral points of Cm and the elliptic curves E over Q with E[3] ≃ µ3 ⊕Z/3Z.
For an elliptic curve E with a 3-torsion point, we get the Weierstrass equation
of E of the form (1) with a, b ∈ Z by doing a change of variables. In this
section, we denote by E(a, b) an elliptic curve defined by the equation (1) with
a, b ∈ Z. By Proposition 2.2, we note that E(a, b)[3] ≃ µ3⊕Z/3Z if and only if
a3−27b = −k3 for some non-zero integer k. Therefore we have (a, k) ∈ C27b(Z)
if E(a, b)[3] ≃ µ3 ⊕ Z/3Z. For a non-zero integer b, we can give a map

φ : C27b(Z) → {E(a, b) | a ∈ Z and E(a, b)[3] ≃ µ3 ⊕ Z/3Z}
defined by φ(α, β) = E(α, b) with α3+β3 = 27b. We note that the Weierstrass
equation of E(α, b) given by the equation (1) is minimal if (α, β) ∈ C27b(Z)
with gcd(α, β) = 1 (see [2, Section 1]).

We consider the condition that E(a, b) is isomorphic to E(a′, b′) over Q with
a, b, a′, b′ ∈ Z. For an elliptic curve E over a field K given by a Weierstrass
equation, we note that every isomorphism of E to another elliptic curve over
K given by a Weierstrass equation can be given by a change of variables of the
form x 7→ u2x + r, y 7→ u3y + u2sx + t with r, s, t, u ∈ K (see [4]). Therefore
we can see that

E(a, b) ≃ E(a′, b′) ⇐⇒ a = ua′, b = u3b′ for some u ∈ Q×.

Let T denote the set of positive integers. We define an equivalence relation on
the set

∐

b∈T C27b(Z) as follows: For (α, β), (α′, β′) ∈ ∐

b∈T C27b(Z), we define

(α, β) ∼ (α′, β′) ⇐⇒ α = uα′, β = uβ′ for some u ∈ Q×.

Then we have the following:

Theorem 4.1. We have an isomorphism

Φ :
∐

b∈T

C27b(Z)/ ∼−→ {elliptic curves E over Q with E[3] ≃ µ3 ⊕ Z/3Z}

as sets defined by (α, β) 7→ E(α, b) for (α, β) ∈ C27b(Z).
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Table 3. Pn and nQ for some n ≥ 1

Points of Cm Points of Em

P1 = (6,−3) Q = (756,−20412)
P2 = (5, 4) 2Q = (252,−756)
P3 =

(

− 51
38 ,

219
38

)

3Q = (513, 10935)
P4 =

(

− 1256
61 , 126561

)

4Q = (15372, 1199996)
P5 =

(

270813
40049 ,− 197646

40049

)

5Q =
(

104436
841 ,− 1062465012

24389

)

...
...

For a non-zero integer m, we note that the curve Cm is isomorphic to an
elliptic curve

Em : Y 2 = X3 − 432m2,

where

X =
12m

y + x
, Y = 36m

y − x

y + x
.

Take b = 7 and m = 27b. Then the curve Cm has a point P1 = (6,−3). Let
Q = (756,−20412) be a point of Em corresponding to the point P1. We denote
by Pn a point of Cm corresponding to the point nQ of Em for n ≥ 1. In Table
3, we list Pn and nQ for some n ≥ 1. As shown in Table 3, we see that the order
of the point Q is infinite by [4, Ch. 8, Corollary 7.2]. Since P1, P2 ∈ C27b(Z),
the map Φ gives elliptic curves E(6, 7), E(5, 7). Although P3 6∈ C27b(Z), we
have P ′

3 = (−51, 219) ∈ C27b′ (Z) with b′ = 38b and hence the map Φ gives
an elliptic curve E(−51, b′). Similarly, points P4 and P5 give elliptic curves E
with E[3] ≃ µ3 ⊕Z/3Z using the map Φ. Therefore we can construct infinitely
many elliptic curves E over Q with E[3] ≃ µ3 ⊕ Z/3Z in this way.
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