ON ELLIPTIC CURVES WHOSE 3-TORSION SUBGROUP SPLITS AS $\mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$

Masaya Yasuda

Abstract

In this paper, we study elliptic curves E over \mathbb{Q} such that the 3 -torsion subgroup $E[3]$ is split as $\mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$. For a non-zero integer m, let C_{m} denote the curve $x^{3}+y^{3}=m$. We consider the relation between the set of integral points of C_{m} and the elliptic curves E with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$.

1. Introduction

Let E be an elliptic curve over the field \mathbb{Q} of rational numbers. For a prime p, the p-torsion points of E are the points of finite order p in the Mordell-Weil group $E(\mathbb{Q})$. Assume that E has a 3 -torsion point P. By translating P to the point $(0,0)$, we get the Weierstrass equation of E as follows:

$$
\begin{equation*}
y^{2}+a x y+b y=x^{3}, a, b \in \mathbb{Q} \tag{1}
\end{equation*}
$$

with $\Delta(E)=b^{3}\left(a^{3}-27 b\right) \neq 0$, where $\Delta(E)$ is the discriminant of E. For $m \in \mathbb{Z}$, let $E[m]$ denote the m-torsion subgroup of E. Using the Weil-pairing $e_{3}: E[3] \times E[3] \rightarrow \mu_{3}$, we can define a map $E[3] \rightarrow \mu_{3}$ by $Q \mapsto e_{3}(P, Q)$. Since the point P is rational over \mathbb{Q}, this map gives an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} / 3 \mathbb{Z} \rightarrow E[3] \rightarrow \mu_{3} \rightarrow 0 \tag{2}
\end{equation*}
$$

of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-modules. The purpose of this paper is to study elliptic curves E such that $E[3]$ is split as $\mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$.

For an elliptic curve E with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$, there exists an isogeny $\phi: E \rightarrow E^{\prime}$ with ker $\phi=\mu_{3}$. Note that the image of a 3-torsion point of E gives a 3-torsion point of E^{\prime}. In this paper, we determine the Weierstrass equation of E^{\prime} of the form (1). In his paper [3], Miyawaki determined all the elliptic curves of prime power conductor which have a 3 -torsion point. As an application, we determine all the isogeny relations among the elliptic curves of 3 -power conductor which have a 3 -torsion point.

A classical question in number theory is to describe the positive integer m which can be written as the sum of two rational cubes. This leads one to study the curve $C_{m}: x^{3}+y^{3}=m$ for a non-zero integer m. We here consider the relation between the set of integral points of C_{m} and the elliptic curves E with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$.

2. Preliminaries

Let E be an elliptic curve over \mathbb{Q} given by the equation (1) and $P=(0,0)$. Note that the discriminant of E is given by $\Delta(E)=b^{3}\left(a^{3}-27 b\right)$. Fix $Q=$ $(x, y) \in E[3]$ with $x \neq 0$. Since $2 Q=-Q$, we have

$$
\begin{equation*}
x^{3}+\frac{a^{2}}{3} x^{2}+a b x+b^{2}=0 \tag{3}
\end{equation*}
$$

Setting $x=z-\frac{a^{2}}{9}$, we get

$$
z^{3}+p z+q=0
$$

where

$$
p=-\frac{1}{27} a^{4}+a b, q=\frac{2}{729} a^{6}-\frac{1}{9} a^{3} b+b^{2} .
$$

Set $f(z)=z^{3}+p z+q$ and let $\Delta(f)$ denote its discriminant defined by $-4 p^{3}-$ $27 q^{2}$. A computation shows the following result:

Lemma 2.1.

$$
\Delta(f)=-\frac{\Delta(E)^{2}}{27 b^{4}}
$$

Set

$$
\left\{\begin{array}{l}
u=\sqrt[3]{-\frac{q}{2}+\sqrt{-\frac{\Delta(f)}{4 \cdot 27}}} \\
v=\sqrt[3]{-\frac{q}{2}-\sqrt{-\frac{\Delta(f)}{4 \cdot 27}}}
\end{array}\right.
$$

Let ω be a primitive 3-th root of unity. By Caldano's formula, the solutions of the cubic equation (3) are

$$
\begin{equation*}
x=-\frac{a^{2}}{9}+u+v,-\frac{a^{2}}{9}+u \omega+v \omega^{2},-\frac{a^{2}}{9}+u \omega^{2}+v \omega . \tag{4}
\end{equation*}
$$

By Lemma 2.1, we get

$$
\begin{aligned}
-\frac{q}{2} \pm \sqrt{-\frac{\Delta(f)}{4 \cdot 27}} & =\frac{1}{2}\left(-q \pm \frac{|\Delta(E)|}{27 b^{2}}\right) \\
& =\frac{1}{2}\left(-q \pm \frac{\left|b\left(a^{3}-27 b\right)\right|}{27}\right) \\
& =-\frac{\left(a^{3}-27 b\right)^{2}}{27^{2}},-\frac{a^{3}\left(a^{3}-27 b\right)}{27^{2}}
\end{aligned}
$$

Hence we have $u, v \in \mathbb{Q}\left(\sqrt[3]{a^{3}-27 b}\right)$. In particular, we have

$$
\begin{equation*}
u+v=-\frac{1}{9}\left(\sqrt[3]{\left(a^{3}-27 b\right)^{2}}+a \cdot \sqrt[3]{a^{3}-27 b}\right) \tag{5}
\end{equation*}
$$

Let $\mathbb{Q}(E[3])$ denote the field generated by the points of $E[3]$. Taking $Q \in$ $E[3]$ with $e_{3}(P, Q)=\omega$, we get a faithful representation $\rho: \operatorname{Gal}(\mathbb{Q}(E[3]) / \mathbb{Q}) \rightarrow$ $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ defined by

$$
\binom{\sigma(P)}{\sigma(Q)}=\rho(\sigma)\binom{P}{Q}, \forall \sigma \in \operatorname{Gal}(\mathbb{Q}(E[3]) / \mathbb{Q})
$$

By the exact sequence (2), we have $\rho=\left(\begin{array}{ll}1 & * \\ 0 & \chi\end{array}\right)$ where χ is the cyclotomic character. We note that $\mathbb{Q}(\omega) \subseteq \mathbb{Q}(E[3])$ and the extension degree $[\mathbb{Q}(E[3])$: $\mathbb{Q}]$ is divided by 3 (see [4] for details). Hence we have $\mathbb{Q}(E[3])=\mathbb{Q}\left(\omega, \sqrt[3]{a^{3}-27 b}\right)$. Moreover, we have the following:
Proposition 2.2. The exact sequence (2) of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-modules is split if and only if $a^{3}-27 b \in\left(\mathbb{Q}^{\times}\right)^{3}$.

3. The Weierstrass equation of E / μ_{3} and isogeny relations

Let E be an elliptic curve with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$. In this section, we determine the Weierstrass equation of E / μ_{3} of the form (1). As an application, we determine all the isogeny relations among the elliptic curves of 3 -power conductor which have a 3 -torsion point.

3.1. The Weierstrass equation of E / μ_{3}

Let C be a subgroup of an elliptic curve E. Vélu in [5] gives an explicit formula for determining the equation of the isogeny $E \rightarrow E / C$ and the Weierstrass equation of the curve E / C. We shall review here Vélu's formula. Let E be an elliptic curve given by a Weierstrass equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Let S be a set of representatives for $(C \backslash\{O\}) /\{ \pm 1\}$, where O is the point at infinity. We define two functions as follows: For a point $Q=(x, y)$ on $E \backslash\{O\}$,

$$
\left\{\begin{array}{l}
g^{x}(Q)=3 x^{2}+2 a_{2} x+a_{4}-a_{1} y \\
g^{y}(Q)=-2 y-a_{1} x-a_{3}
\end{array}\right.
$$

Set

$$
\begin{aligned}
t(Q) & = \begin{cases}g^{x}(Q) & \text { if } Q=-Q \text { on } E, \\
2 g^{x}(Q)-a_{1} g^{y}(Q) & \text { otherwise }\end{cases} \\
u(Q) & =\left(g^{y}(Q)\right)^{2}, \\
t & =\sum_{Q \in S} t(Q), \\
w & =\sum_{Q \in S}(u(Q)+x(Q) t(Q))
\end{aligned}
$$

Then the Weierstrass equation of the elliptic curve E / C is given by

$$
Y^{2}+A_{1} X Y+A_{3} Y=X^{3}+A_{2} X^{2}+A_{4} X+A_{6}
$$

where $A_{1}=a_{1}, A_{2}=a_{2}, A_{3}=a_{3}, A_{4}=a_{4}-5 t, A_{6}=a_{6}-\left(a_{1}^{2}+4 a_{2}\right) t-7 w$.
Let E be an elliptic curve \mathbb{Q} given the equation (1) with $a^{3}-27 b=-k^{3} \in$ $\left(\mathbb{Q}^{\times}\right)^{3}$. By Proposition 2.2, we have $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$. Let $Q=(x, y) \in E[3]$ with $x=-\frac{a^{2}}{9}+u+v$ (see $\S 2$ for u and v). Then we can see $\mu_{3} \simeq\langle Q\rangle \subseteq E[3]$. In the notation as above, we take $S=\{Q\}$ as a set of representatives for $\left(\mu_{3} \backslash\{O\}\right) /\{ \pm 1\}$. By (5), we have

$$
x=-\frac{1}{9}\left(a^{2}+k^{2}-a k\right)=-\frac{3 b}{a+k} .
$$

A computation shows that we have

$$
t=-\frac{b k(a-2 k)}{a+k}, w=\frac{3 b^{2} k(a-3 k)}{(a+k)^{2}} .
$$

Then the Weierstrass equation of the elliptic curve E / μ_{3} is as follows:

$$
Y^{2}+a X Y+b Y=X^{3}+A_{4} X+A_{6}
$$

where $A_{4}=5 t, A_{6}=-a^{2} t-7 w$. Let ϕ be the isogeny $E \rightarrow E / \mu_{3}$. We have

$$
\phi(P)=\left(-\frac{t(a-t)}{3}, \frac{a t(2 a-t)}{9}\right)
$$

where $P=(0,0)$ is the 3 -torsion point of E (see [5] for details). The change of variables $X \mapsto X-\frac{t(a-t)}{3}, Y \mapsto Y+\frac{a t(2 a-t)}{9}$ gives the equation

$$
Y^{2}+a X Y+\frac{(a+k)^{3}}{27} Y=X^{3}-k(a-k) X^{2}-\frac{k(a+k)^{3}}{27}
$$

After the change of variable $Y \mapsto Y-k X$, we obtain the equation of the form (1) as follows:

$$
Y^{2}+(a-2 k) X Y+\frac{(a+k)^{3}}{27} Y=X^{3}
$$

In summary, we have the following:
Proposition 3.1. Let E be an elliptic curve over \mathbb{Q} given by the equation (1) with $a^{3}-27 b=-k^{3} \in\left(\mathbb{Q}^{\times}\right)^{3}$. Then the Weierstrass equation of the elliptic curve E / μ_{3} of the form (1) is as follows:

$$
E / \mu_{3}: Y^{2}+(a-2 k) X Y+\frac{(a+k)^{3}}{27} Y=X^{3}
$$

3.2. Application

By applying Proposition 3.1, we determine all the isogeny relations among the elliptic curves of 3 -power conductor which have a 3 -torsion point. In his paper [3], Miyawaki determined all such curves. In Table 1, we list all such curves. For each curve, the data given are Miyawaki's code E^{i}, coefficients a, b of the equation (1), the discriminant Δ, the conductor N and the j-invariant j (see [3] for details).

TABLE 1. Elliptic curves of 3-power conductor which have a 3 -torsion point

E^{i}	a	b	Δ	N	j
E^{3}	0	1	-3^{3}	3^{3}	0
E^{4}	-6	1	-3^{5}	3^{3}	$-2^{15} \cdot 3 \cdot 5^{3}$
E^{5}	0	3	-3^{7}	3^{5}	0
E^{8}	6	9	-3^{9}	3^{3}	0
E^{9}	0	9	-3^{11}	3^{5}	0

Let E be one of elliptic curves E^{3}, E^{8}. Since $a^{3}-27 b \in\left(\mathbb{Q}^{\times}\right)^{3}$, it follows from Proposition 2.2 that $E[3]$ is split as $\mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$. We consider the Weierstrass equation of E / μ_{3} as follows:

- In the case $E=E^{3}$, we have

$$
E^{3} / \mu_{3}: Y^{2}-6 X Y+Y=X^{3}
$$

by Proposition 3.1. Therefore we have $E^{4}=E^{3} / \mu_{3}$.

- In the case $E=E^{8}$, we have

$$
E^{8} / \mu_{3}: Y^{2}+27 Y=X^{3}
$$

by Proposition 3.1. The change of variables $X \mapsto 9 X, Y \mapsto 27 Y$ gives the equation $Y^{2}+Y=X^{3}$. Therefore we have $E^{3}=E^{8} / \mu_{3}$.
Therefore we have

$$
E^{8} \sim E^{3}=E^{8} / \mu_{3} \sim E^{4}=E^{3} / \mu_{3} .
$$

Since the conductor is an isogeny invariant, elliptic curves E^{5}, E^{9} are not isogeneous to elliptic curves E^{3}, E^{4}, E^{8}. Since $\operatorname{rank}\left(E^{5}\right)=0$ and $\operatorname{rank}\left(E^{9}\right)=1$, we see that E^{5} is not isogeneous to E^{9}.
Remark. We can determine all the elliptic curves E over \mathbb{Q} with $E[3] \simeq \mu_{3} \oplus$ $\mathbb{Z} / 3 \mathbb{Z}$ and $j \in \mathbb{Z}$. In his paper [1], Frey determined all the elliptic curves having a 3-torsion point with $j \in \mathbb{Z}$. In Table 2, we list all such curves of the form (1).

TABLE 2. Elliptic curves having a 3-torsion point with $j \in \mathbb{Z}$

The Weierstrass equation of the form (1)	The j-invariant
$y^{2}+2 t y=x^{3}(t \neq 0)$	0
$y^{2}+2 x y+\frac{8}{27+3^{n}} y=x^{3}(0 \leq n \leq 6)$	$3^{6-n}\left(1+3^{n-1}\right)^{3}\left(1+3^{n-3}\right)$
$y^{2}+2 x y+\frac{8}{27-3^{n}} y=x^{3}(0 \leq n \leq 6, n \neq 3)$	$3^{6-n}\left(1-3^{n-1}\right)^{3}\left(3^{n-3}-1\right)$
$y^{2}+2 x y-\frac{4}{27} y=x^{3}$	$2^{4} 3^{3} 5^{3}$

By Table 2 and Proposition 2.2, the Weierstrass equation of an elliptic curve E with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and $j \in \mathbb{Z}$ is either equal to

$$
\begin{equation*}
y^{2}+k^{3} y=x^{3} \text { for } k \in \mathbb{Q}^{\times} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{2}+2 x y+\frac{1}{3} y=x^{3} . \tag{7}
\end{equation*}
$$

We see that an elliptic curve given by the equation (6) is isomorphic to the elliptic curve E^{3} defined in Table 1. Moreover, we see that an elliptic curve given by the equation (7) is isomorphic to the elliptic curve E^{8} defined in Table 1. Therefore an elliptic curve E with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and $j \in \mathbb{Z}$ is either equal to E^{3} or E^{8}.

4. Relation with the curve $x^{3}+y^{3}=m$

For a non-zero integer m, let C_{m} denote the curve defined by the equation $x^{3}+y^{3}=m$. In this section, we study the relation between the set $C_{m}(\mathbb{Z})$ of integral points of C_{m} and the elliptic curves E over \mathbb{Q} with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$. For an elliptic curve E with a 3 -torsion point, we get the Weierstrass equation of E of the form (1) with $a, b \in \mathbb{Z}$ by doing a change of variables. In this section, we denote by $E(a, b)$ an elliptic curve defined by the equation (1) with $a, b \in \mathbb{Z}$. By Proposition 2.2, we note that $E(a, b)[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$ if and only if $a^{3}-27 b=-k^{3}$ for some non-zero integer k. Therefore we have $(a, k) \in C_{27 b}(\mathbb{Z})$ if $E(a, b)[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$. For a non-zero integer b, we can give a map

$$
\phi: C_{27 b}(\mathbb{Z}) \rightarrow\left\{E(a, b) \mid a \in \mathbb{Z} \text { and } E(a, b)[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}\right\}
$$

defined by $\phi(\alpha, \beta)=E(\alpha, b)$ with $\alpha^{3}+\beta^{3}=27 b$. We note that the Weierstrass equation of $E(\alpha, b)$ given by the equation (1) is minimal if $(\alpha, \beta) \in C_{27 b}(\mathbb{Z})$ with $\operatorname{gcd}(\alpha, \beta)=1$ (see $[2$, Section 1]).

We consider the condition that $E(a, b)$ is isomorphic to $E\left(a^{\prime}, b^{\prime}\right)$ over \mathbb{Q} with $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$. For an elliptic curve E over a field K given by a Weierstrass equation, we note that every isomorphism of E to another elliptic curve over K given by a Weierstrass equation can be given by a change of variables of the form $x \mapsto u^{2} x+r, y \mapsto u^{3} y+u^{2} s x+t$ with $r, s, t, u \in K$ (see [4]). Therefore we can see that

$$
E(a, b) \simeq E\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow a=u a^{\prime}, b=u^{3} b^{\prime} \text { for some } u \in \mathbb{Q}^{\times} .
$$

Let T denote the set of positive integers. We define an equivalence relation on the set $\coprod_{b \in T} C_{27 b}(\mathbb{Z})$ as follows: For $(\alpha, \beta),\left(\alpha^{\prime}, \beta^{\prime}\right) \in \coprod_{b \in T} C_{27 b}(\mathbb{Z})$, we define

$$
(\alpha, \beta) \sim\left(\alpha^{\prime}, \beta^{\prime}\right) \Longleftrightarrow \alpha=u \alpha^{\prime}, \beta=u \beta^{\prime} \text { for some } u \in \mathbb{Q}^{\times} .
$$

Then we have the following:
Theorem 4.1. We have an isomorphism

$$
\Phi: \coprod_{b \in T} C_{27 b}(\mathbb{Z}) / \sim \longrightarrow\left\{\text { elliptic curves } E \text { over } \mathbb{Q} \text { with } E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}\right\}
$$

as sets defined by $(\alpha, \beta) \mapsto E(\alpha, b)$ for $(\alpha, \beta) \in C_{27 b}(\mathbb{Z})$.

Table 3. P_{n} and $n Q$ for some $n \geq 1$

Points of C_{m}	Points of E_{m}
$P_{1}=(6,-3)$	$Q=(756,-20412)$
$P_{2}=(5,4)$	$2 Q=(252,-756)$
$P_{3}=\left(-\frac{51}{38} 8, \frac{219}{38}\right)$	$3 Q=(513,10935)$
$P_{4}=\left(-\frac{2256}{681}, \frac{1265}{61}\right)$	$4 Q=(15372,1199996)$
$P_{5}=\left(\frac{27013}{40049},-\frac{197646}{40049}\right)$	$5 Q=\left(\frac{104436}{841},-\frac{1062465012}{24389}\right)$
$\quad \vdots$	\vdots

For a non-zero integer m, we note that the curve C_{m} is isomorphic to an elliptic curve

$$
E_{m}: Y^{2}=X^{3}-432 m^{2}
$$

where

$$
X=\frac{12 m}{y+x}, \quad Y=36 m \frac{y-x}{y+x}
$$

Take $b=7$ and $m=27 b$. Then the curve C_{m} has a point $P_{1}=(6,-3)$. Let $Q=(756,-20412)$ be a point of E_{m} corresponding to the point P_{1}. We denote by P_{n} a point of C_{m} corresponding to the point $n Q$ of E_{m} for $n \geq 1$. In Table 3 , we list P_{n} and $n Q$ for some $n \geq 1$. As shown in Table 3, we see that the order of the point Q is infinite by [4, Ch. 8 , Corollary 7.2]. Since $P_{1}, P_{2} \in C_{27 b}(\mathbb{Z})$, the map Φ gives elliptic curves $E(6,7), E(5,7)$. Although $P_{3} \notin C_{27 b}(\mathbb{Z})$, we have $P_{3}^{\prime}=(-51,219) \in C_{27 b^{\prime}}(\mathbb{Z})$ with $b^{\prime}=38 b$ and hence the map Φ gives an elliptic curve $E\left(-51, b^{\prime}\right)$. Similarly, points P_{4} and P_{5} give elliptic curves E with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$ using the map Φ. Therefore we can construct infinitely many elliptic curves E over \mathbb{Q} with $E[3] \simeq \mu_{3} \oplus \mathbb{Z} / 3 \mathbb{Z}$ in this way.

References

[1] G. Frey, Some remarks concerning points of finite order on elliptic curves over global fields, Ark. Mat. 15 (1977), no. 1, 1-19.
[2] T. Hadano, Elliptic curves with a torsion point, Nagoya Math. J. 66 (1977), 99-108.
[3] I. Miyawaki, Elliptic curves of prime power conductor with \mathbb{Q}-rational points of finite order, Osaka J. Math. 10 (1973), 309-323.
[4] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-Verlag, Berlin-Heidelberg New York, 1994.
[5] J. Vélu, Isogénis entre courbs elliptiques, C. R. Acad. Sci. Paris Sér. A-B (1971), 238-241.
Fujitsu Laboratories Ltd.
4-1-1, Kamikodanaka, Nakahara-ku
Kawasaki 211-8588, Japan
E-mail address: myasuda@labs.fujitsu.com

