\mathcal{N} -SUBALGEBRAS OF TYPE $(\in, \in \lor q)$ BASED ON POINT \mathcal{N} -STRUCTURES IN BCK/BCI-ALGEBRAS

KYOUNG JA LEE, YOUNG BAE JUN, AND XIAOHONG ZHANG

ABSTRACT. Characterizations of \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ are provided. The notion of \mathcal{N} -subalgebras of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ is introduced, and its characterizations are discussed. Conditions for an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ (resp. $(\overline{\in}, \overline{\in} \lor \overline{q})$) to be an \mathcal{N} -subalgebra of type (\in, \in) are considered.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A: X \to \{0,1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval [0,1] and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [5] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They applied \mathcal{N} -structures to BCK/BCI-algebras, and discussed \mathcal{N} -subalgebras and \mathcal{N} -ideals in BCK/BCI-algebras. Jun et al. [6] considered closed ideals in BCH-algebras based on \mathcal{N} -structures. Also, using \mathcal{N} -structures, Jun and Lee introduced the notion of an \mathcal{N} -essence in a subtraction algebra, and investigated related properties. They discussed relations among an \mathcal{N} -ideal, an \mathcal{N} -subalgebra and an \mathcal{N} -essence (see [4]). To obtain more general form of an \mathcal{N} -subalgebra in BCK/BCI-algebras, Jun et al. defined the notions of \mathcal{N} subalgebras of types (\in, \in) , (\in, q) , $(\in, \in \lor q)$, (q, \in) , (q, q) and $(q, \in \lor q)$, and investigated related properties. They provided a characterization of an \mathcal{N} subalgebra of type $(\in, \in \lor q)$. They also gave conditions for an \mathcal{N} -structure to

 $\bigodot 2012$ The Korean Mathematical Society

431

Received December 28, 2010.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. point \mathcal{N} -structure, closed (resp. open) support, q-support, $\in \lor q$ -support, \mathcal{N} -subalgebra of types $(\in, \in \lor q), (\overline{\in}, \overline{\in} \lor \overline{q})$.

be an \mathcal{N} -subalgebra of type $(q, \in \lor q)$ (see [2]). As a continuation of the paper [2], we give characterizations of \mathcal{N} -subalgebra of type $(\in, \in \lor q)$. We introduced the notion of \mathcal{N} -subalgebras of type $(\overline{\in}, \overline{\in} \lor \overline{q})$, and discuss its characterizations. We provide conditions for an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ (resp. $(\overline{\in}, \overline{\in} \lor \overline{q}))$ to be an \mathcal{N} -subalgebra of type (\in, \in) .

2. Preliminaries

Let $K(\tau)$ be the class of all algebras with type $\tau = (2, 0)$. By a *BCI-algebra* we mean a system $X := (X, *, 0) \in K(\tau)$ in which the following axioms hold:

- (a1) ((x*y)*(x*z))*(z*y) = 0,
- (a2) (x * (x * y)) * y = 0,
- (a3) x * x = 0,
- (a4) $x * y = y * x = 0 \implies x = y$,

where x, y and z are elements of X. If a *BCI*-algebra X satisfies 0 * x = 0 for all $x \in X$, then we say that X is a *BCK*-algebra. We can define a partial ordering \leq by

$$(\forall x, y \in X) (x \preceq y \iff x * y = 0).$$

In a BCK/BCI-algebra X, the following hold:

(b1)
$$x * 0 = x$$
,

(b2) (x * y) * z = (x * z) * y,

where x, y and z are elements of X.

A non-empty subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$.

We refer the reader to the books [1] and [8] for further information regarding BCK/BCI-algebras.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\forall \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise,} \end{cases} \\ \land \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, f) of X and an \mathcal{N} -function f on X. In what follows, let X denote a BCK/BCI-algebra and f an \mathcal{N} -function on X unless otherwise specified.

Definition 2.1 (See [5]). By a *subalgebra* of X based on \mathcal{N} -function f (briefly, \mathcal{N} -subalgebra of X), we mean an \mathcal{N} -structure (X, f) in which f satisfies the following condition:

(2.1)
$$f(x * y) \le \lor \{f(x), f(y)\},\$$

where x and y are elements of X.

For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0)$, the set $C(f; \alpha) := \{x \in X \mid f(x) \leq \alpha\}$ is called the *closed support* of (X, f) related to α , and the set $O(f; \alpha) := \{x \in X \mid f(x) < \alpha\}$ is called the *open support* of (X, f) related to α .

Using the similar method to the transfer principle in fuzzy theory (see [3, 7]), Jun et al. [6] considered transfer principle in \mathcal{N} -structures as follows.

Theorem 2.2 (\mathcal{N} -transfer principle, See [6]). An \mathcal{N} -structure (X, f) satisfies the property $\overline{\mathcal{P}}$ if and only if for all $\alpha \in [-1, 0]$,

 $C(f;\alpha) \neq \emptyset \Rightarrow C(f;\alpha)$ satisfies the property \mathcal{P} .

Lemma 2.3 (See [5]). An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra of X if and only if every open support of (X, f) related to α is a subalgebra of X for all $\alpha \in [-1, 0)$.

3. \mathcal{N} -subalgebras of types $(\in, \in \lor q)$ and $(\overline{\in}, \overline{\in} \lor \overline{q})$

Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f(y) = \begin{cases} 0 & \text{if } y \neq x, \\ \alpha & \text{if } y = x, \end{cases}$$

where $\alpha \in [-1, 0)$. In this case, f is denoted by x_{α} and we call (X, x_{α}) a point \mathcal{N} -structure. For any \mathcal{N} -structure (X, g), we say that a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset (resp. \mathcal{N}_q -subset) of (X, g) if $g(x) \leq \alpha$ (resp. $g(x) + \alpha + 1 < 0$). If a point \mathcal{N} -structure (X, x_{α}) is an \mathcal{N}_{\in} -subset of (X, g) or an \mathcal{N}_q -subset of (X, g), we say (X, x_{α}) is an $\mathcal{N}_{\in \vee q}$ -subset of (X, g).

Definition 3.1 (See [2]). An \mathcal{N} -structure (X, f) is called an \mathcal{N} -subalgebra of type (\in, \in) (resp. type $(\in, \in \lor q)$) if whenever two point \mathcal{N} -structures (X, x_{α_1}) and (X, y_{α_2}) are \mathcal{N}_{\in} -subsets of (X, f), then the point \mathcal{N} -structure $(X, (x * y)_{\lor \{\alpha_1, \alpha_2\}})$ is an \mathcal{N}_{\in} -subset (resp. $\mathcal{N}_{\in \lor q}$ -subset) of (X, f).

Lemma 3.2 (See [2]). An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ if and only if it satisfies:

(3.1) $(\forall x, y \in X) (f(x * y) \le \lor \{f(x), f(y), -0.5\}).$

Theorem 3.3. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ if and only if for every $\alpha \in [-0.5, 0]$ the nonempty closed support of (X, f) related to α is a subalgebra of X.

Proof. Assume that (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ and let $\alpha \in [-0.5, 0]$ be such that $C(f; \alpha) \neq \emptyset$. Let $x, y \in C(f; \alpha)$. Then $f(x) \leq \alpha$ and $f(y) \leq \alpha$. It follows from Lemma 3.2 that $f(x * y) \leq \lor \{f(x), f(y), -0.5\} \leq \lor \{\alpha, -0.5\} = \alpha$ so that $x * y \in C(f; \alpha)$. Therefore $C(f; \alpha)$ is a subalgebra of X.

Conversely, let (X, f) be an \mathcal{N} -structure such that the non-empty closed support of (X, f) related to α is a subalgebra of X for all $\alpha \in [-0.5, 0]$. If

there exist $a, b \in X$ such that $f(a * b) > \lor \{f(a), f(b), -0.5\}$, then we can take $\beta \in [-1, 0]$ such that $f(a * b) > \beta \ge \lor \{f(a), f(b), -0.5\}$. Thus $a, b \in C(f; \beta)$ and $\beta \ge -0.5$, and so $a * b \in C(f; \beta)$, i.e., $f(a * b) \le \beta$. This is a contradiction, and therefore $f(x * y) \le \lor \{f(x), f(y), -0.5\}$ for all $x, y \in X$. Using Lemma 3.2, we conclude that (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$.

Theorem 3.4. Let S be a subalgebra of X. For any $\alpha \in [-0.5, 0)$, there exists an \mathcal{N} -subalgebra (X, f) of type $(\in, \in \lor q)$ for which S is represented by the closed support of (X, f) related to α .

Proof. Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f(x) = \begin{cases} \alpha & \text{if } x \in S, \\ 0 & \text{if } x \notin S \end{cases}$$

for all $x \in X$ where $\alpha \in [-0.5, 0)$. Assume that $f(a*b) > \lor \{f(a), f(b), -0.5\}$ for some $a, b \in X$. Since the cardinality of the image of f is 2, we have f(a*b) = 0and $\lor \{f(a), f(b), -0.5\} = \alpha$. Since $\alpha \ge -0.5$, it follows that $f(a) = \alpha = f(b)$ so that $a, b \in S$. Since S is a subalgebra of X, we obtain $a*b \in S$ and so $f(a*b) = \alpha < 0$. This is a contradiction. Therefore $f(x*y) \le \lor \{f(x), f(y), -0.5\}$ for all $x, y \in X$. Using Lemma 3.2, we conclude that (X, f) is an \mathcal{N} -subalgebra (X, f)of type $(\in, \in \lor q)$. Obviously, S is represented by the closed support of (X, f)related to α .

Note that every \mathcal{N} -subalgebra of type (\in, \in) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$, but the converse is not true in general (see [2]). Now, we give a condition for an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ to be an \mathcal{N} -subalgebra of type (\in, \in) .

Theorem 3.5. Let (X, f) be an \mathcal{N} -structure of type $(\in, \in \lor q)$ such that f(x) > -0.5 for all $x \in X$. Then (X, f) is an \mathcal{N} -subalgebra of (\in, \in) .

Proof. Let $x, y \in X$ and $\alpha \in [-1,0)$ be such that (X, x_{α_1}) and (X, y_{α_2}) are \mathcal{N}_{\in} -subsets of (X, f). Then $f(x) \leq \alpha_1$ and $f(y) \leq \alpha_2$. It follows from Lemma 3.2 and the hypothesis that $f(x * y) \leq \lor \{f(x), f(y), -0.5\} = \lor \{f(x), f(y)\} \leq \lor \{\alpha_1, \alpha_2\}$ so that $(X, (x * y)_{\lor \{\alpha_1, \alpha_2\}})$ is an \mathcal{N}_{\in} -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subalgebra of type (\in, \in) .

For any \mathcal{N} -structure (X, f) and $\alpha \in [-1, 0)$, the *q*-support and the $\in \lor q$ -support of (X, f) related to α are defined to be the sets

$$\mathcal{N}_q(f;\alpha) := \{ x \in X \mid (X, x_\alpha) \text{ is an } \mathcal{N}_q \text{-subset of } (X, f) \}$$

and

 $\mathcal{N}_{\in \forall q}(f;\alpha) := \left\{ x \in X \mid (X, x_{\alpha}) \text{ is an } \mathcal{N}_{\in \forall q} \text{-subset of } (X, f) \right\},\$

respectively. Note that the $\in \lor q$ -support is the union of the closed support and the q-support, that is, $\mathcal{N}_{\in \lor q}(f; \alpha) = C(f; \alpha) \cup \mathcal{N}_q(f; \alpha), \ \alpha \in [-1, 0).$

Theorem 3.6. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$ if and only if the $\in \lor q$ -support of (X, f) related to α is a subalgebra of X for all $\alpha \in [-1, 0)$.

Proof. Suppose that (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$. Let $x, y \in \mathcal{N}_{\in \lor q}(f; \alpha)$ for $\alpha \in [-1, 0)$. Then (X, x_{α}) and (X, y_{α}) are $\mathcal{N}_{\in \lor q}$ -subsets of (X, f). Hence $f(x) \leq \alpha$ or $f(x) + \alpha + 1 < 0$, and $f(y) \leq \alpha$ or $f(y) + \alpha + 1 < 0$. Then we consider the following four cases:

- (c1) $f(x) \leq \alpha$ and $f(y) \leq \alpha$.
- (c2) $f(x) \leq \alpha$ and $f(y) + \alpha + 1 < 0$.
- (c3) $f(x) + \alpha + 1 < 0$ and $f(y) \le \alpha$.
- (c4) $f(x) + \alpha + 1 < 0$ and $f(y) + \alpha + 1 < 0$.

Combining (3.1) and (c1), we have $f(x * y) \leq \vee \{\alpha, -0.5\}$. If $\alpha \geq -0.5$, then $f(x * y) \leq \alpha$ and so $(X, (x * y)_{\alpha})$ is an \mathcal{N}_{\in} -subset of (X, f). Hence $x * y \in C(f; \alpha) \subseteq \mathcal{N}_{\in \lor q}(f; \alpha)$. If $\alpha < -0.5$, then $f(x * y) \leq -0.5$ and so $f(x * y) + \alpha + 1 < -0.5 - 0.5 + 1 = 0$, that is, $(X, (x * y)_{\alpha})$ is an \mathcal{N}_q -subset of (X, f). Therefore $x * y \in \mathcal{N}_q(f; \alpha) \subseteq \mathcal{N}_{\in \lor q}(f; \alpha)$. For the case (c2), assume that $\alpha < -0.5$. Then

$$= \begin{cases} f(y) & \text{if } f(y) > -0.5 \\ -0.5 & \text{if } f(y) \le -0.5 \\ < -1 - \alpha, \end{cases}$$

and so $f(x * y) + \alpha + 1 < 0$. Thus $(X, (x * y)_{\alpha})$ is an \mathcal{N}_q -subset of (X, f). If $\alpha \geq -0.5$, then

$$f(x * y) \leq \vee \{f(x), f(y), -0.5\} \leq \vee \{\alpha, f(y), -0.5\} = \vee \{\alpha, f(y)\}$$
$$= \begin{cases} f(y) & \text{if } f(y) > \alpha, \\ \alpha & \text{if } f(y) \leq \alpha, \end{cases}$$

and thus $x * y \in \mathcal{N}_q(f; \alpha)$ or $x * y \in C(f; \alpha)$. Consequently, $x * y \in \mathcal{N}_{\in \lor q}(f; \alpha)$. For the case (c3), it is similar to the case (c2). Finally, for the case (c4), if $\alpha \geq -0.5$, then $-1 - \alpha \leq -0.5 \leq \alpha$. Hence $f(x * y) \leq \lor \{f(x), f(y), -0.5\} \leq \lor \{-1 - \alpha, -0.5\} = -0.5 \leq \alpha$, which implies that $x * y \in C(f; \alpha)$. If $\alpha < -0.5$, then $\alpha < -0.5 < -1 - \alpha$. Therefore $f(x * y) \leq \lor \{f(x), f(y), -0.5\} \leq \lor \{-1 - \alpha, -0.5\} = -1 - \alpha$, that is, $f(x * y) + \alpha + 1 < 0$, which means that $(X, (x * y)_{\alpha})$ is an \mathcal{N}_q -subset of (X, f). Consequently, the $\in \lor q$ -support of (X, f) related to α is a subalgebra of X for all $\alpha \in [-1, 0)$.

Conversely, let (X, f) be an \mathcal{N} -structure for which the $\in \lor q$ -support of (X, f) related to α is a subalgebra of X for all $\alpha \in [-1, 0)$. Assume that there exist $a, b \in X$ such that $f(a * b) > \lor \{f(a), f(b), -0.5\}$. Then $f(a * b) > \beta \geq \lor \{f(a), f(b), -0.5\}$ for some $\beta \in [-0.5, 0)$. It follows that $a, b \in C(f; \beta) \subseteq \mathcal{N}_{\in \lor q}(f; \beta)$ but $a * b \notin C(f; \beta)$. Also, $f(a * b) + \beta + 1 > 2\beta + 1 \geq 0$, i.e., $a * b \notin \mathcal{N}_q(f; \beta)$. Thus $a * b \notin \mathcal{N}_{\in \lor q}(f; \beta)$ which is a contradiction. Therefore $f(x * y) \leq \lor \{f(x), f(y), -0.5\}$ for all $x, y \in X$. Using Lemma 3.2, we conclude that (X, f) is an \mathcal{N} -subalgebra of type $(\in, \in \lor q)$.

TABLE 1. *-operation

*	0	a	b	С	d
0	$egin{array}{c} 0 \\ a \\ b \end{array}$	0	0	0	0
a	a	0	0	0	0
$\begin{array}{c} 0\\ a\\ b\\ c\\ d\end{array}$	b	a	0	a	0
c	c d	a	a	0	0
d	d	b	a	b	0

TABLE 2. *-operation

*	0	a	b	С
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	С	b	a	0

For any \mathcal{N} -structure (X, g), we say that a point \mathcal{N} -structure (X, x_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset (resp. $\mathcal{N}_{\overline{q}}$ -subset) of (X, g) if $g(x) > \alpha$ (resp. $g(x) + \alpha + 1 \ge 0$). If a point \mathcal{N} -structure (X, x_{α}) is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, g) or an $\mathcal{N}_{\overline{q}}$ -subset of (X, g), we say (X, x_{α}) is an $\mathcal{N}_{\overline{\in} \vee \overline{q}}$ -subset of (X, g).

Definition 3.7. An \mathcal{N} -structure (X, f) is called an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ if whenever a point \mathcal{N} -structure $(X, (x * y)_{\lor \{\alpha, \beta\}})$ is an $\mathcal{N}_{\overline{\in}}$ -subset of (X, f), then (X, x_{α}) is an $\mathcal{N}_{\overline{\in}\lor \overline{q}}$ -subset of (X, f) or (X, x_{β}) is an $\mathcal{N}_{\overline{\in}\lor \overline{q}}$ -subset of (X, f).

Example 3.8. Let $X = \{0, a, b, c, d\}$ be a set with a *-operation which is given by Table 1. Then (X; *, 0) is a *BCK*-algebra (see [8]). Consider an \mathcal{N} -structure (X, g) in which f is defined by

$$g = \begin{pmatrix} 0 & a & b & c & d \\ -0.8 & -0.8 & -0.5 & -0.6 & -0.3 \end{pmatrix}.$$

It is routine to verify that (X, g) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$.

Example 3.9. Consider a *BCI*-algebra $X = \{0, a, b, c\}$ with a *-operation which is given by Table 2. Let (X, f) be an \mathcal{N} -structure in which f is defined by

$$f = \begin{pmatrix} 0 & a & b & c \\ -0.8 & -0.6 & -0.5 & -0.5 \end{pmatrix}.$$

It is routine to verify that (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$.

Theorem 3.10. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ if and only if the following condition is valid:

(3.2)
$$\wedge \{f(x*y), -0.5\} \le \lor \{f(x), f(y)\}$$

where x and y are elements of X.

Proof. Suppose that (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \vee \overline{q})$. If there exist $a, b \in X$ such that $\wedge \{f(a * b), -0.5\} > \alpha = \vee \{f(a), f(b)\}$, then $\alpha \in [-1, -0.5)$. It follows that (X, a_{α}) and (X, b_{α}) are $\mathcal{N}_{\overline{\in}}$ -subsets of (X, f), and $(X, (a * b)_{\alpha})$ is an $\mathcal{N}_{\overline{\overline{e}}}$ -subset of (X, f). Hence (X, a_{α}) is an $\mathcal{N}_{\overline{q}}$ -subset of (X, f) or (X, b_{α}) is an $\mathcal{N}_{\overline{q}}$ -subset of (X, f). Therefore $f(a) + \alpha + 1 \ge 0$ or $f(b) + \alpha + 1 \ge 0$, which imply that $2\alpha + 1 \ge 0$, that is, $\alpha \ge -0.5$. This is a contradiction. Consequently, (3.2) is valid.

Conversely assume that an \mathcal{N} -structure (X, f) satisfies the condition (3.2). Let $x, y \in X$ and $\alpha, \beta \in [-1, 0]$ such that a point \mathcal{N} -structure $(X, (x * y)_{\forall \{\alpha, \beta\}})$ is an $\mathcal{N}_{\overline{\epsilon}}$ -subset of (X, f). Then $f(x*y) > \lor \{\alpha, \beta\}$. If $f(x*y) \leq \lor \{f(x), f(y)\}$, then $\lor \{f(x), f(y)\} > \lor \{\alpha, \beta\}$. Hence $f(x) > \alpha$ or $f(y) > \beta$. Thus (X, x_{α}) is an $\mathcal{N}_{\overline{\epsilon}\lor\overline{q}}$ -subset of (X, f) or (X, y_{β}) is an $\mathcal{N}_{\overline{\epsilon}\lor\overline{q}}$ -subset of (X, f). If $f(x*y) > \lor \{f(x), f(y)\}$, then $\land \{f(x*y), -0.5\} = -0.5$ by (3.2). Hence $f(x) \geq -0.5$ or $f(y) \geq -0.5$. Suppose that (X, x_{α}) and (X, y_{β}) are $\mathcal{N}_{\overline{\epsilon}}$ -subsets of (X, f). Then $\alpha \geq f(x) \geq -0.5$ or $\beta \geq f(y) \geq -0.5$. It follows that $f(x)+\alpha+1 \geq 2f(x)+1 \geq 0$ or $f(y) + \beta + 1 \geq 2f(y) + 1 \geq 0$ so that (X, x_{α}) is an $\mathcal{N}_{\overline{q}}$ -subset of (X, f) or (X, y_{β}) is an $\mathcal{N}_{\overline{q}}$ -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\epsilon}, \overline{\epsilon} \lor \overline{q})$.

Proposition 3.11. If (X, f) is an \mathcal{N} -structure of type $(\overline{\in}, \overline{\in} \lor \overline{q})$, then $f(x) \ge f(0)$ or $f(x) \ge -0.5$ for all $x \in X$.

Proof. It is straightforward by (a3) and (3.2).

Theorem 3.12. An \mathcal{N} -structure (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ if and only if for every $\alpha \in [-1, -0.5)$ the nonempty closed support of (X, f) related to α is a subalgebra of X.

Proof. Suppose that (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$. Let $x, y \in C(f; \alpha)$ where $\alpha \in [-1, -0.5)$. Then $f(x) \leq \alpha$ and $f(y) \leq \alpha$. It follows from (3.2) that $\land \{f(x * y), -0.5\} \leq \alpha$. Since $\alpha < -0.5$, we have $f(x * y) \leq \alpha$, and so $x * y \in C(f; \alpha)$. Therefore $C(f; \alpha)$ is a subalgebra of X.

Conversely, let (X, f) be an \mathcal{N} -structure such that the non-empty closed support of (X, f) related to α is a subalgebra of X for all $\alpha \in [-1, -0.5)$. Assume that there exist $a, b \in X$ such that $\wedge \{f(a * b), -0.5\} > \vee \{f(a), f(b)\}$. If we take $\beta := \frac{1}{2} (\wedge \{f(a * b), -0.5\} + \vee \{f(a), f(b)\})$, then $\beta \in [-1, -0.5)$ and $\wedge \{f(a * b), -0.5\} > \beta > \vee \{f(a), f(b)\}$. Thus $a, b \in C(f; \beta)$ and $a * b \notin C(f; \beta)$. This is a contradiction, and therefore $\wedge \{f(x * y), -0.5\} \leq \vee \{f(x), f(y)\}$ for all $x, y \in X$. Using Theorem 3.10, we conclude that (X, f) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \vee \overline{q})$.

Obviously, every \mathcal{N} -subalgebra of type (\in, \in) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$, but the converse is not true in general as seen in the following example.

Example 3.13. Let $X = \{0, a, b, c, d\}$ be a *BCK*-algebra which is given in Example 3.8. Consider an \mathcal{N} -structure (X, g) in which g is defined by

$$g = \begin{pmatrix} 0 & a & b & c & d \\ -0.7 & -0.6 & -0.2 & -0.2 & -0.4 \end{pmatrix}.$$

Then (X, g) is an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$. But it is not an \mathcal{N} -subalgebra of type (\in, \in) since $(X, d_{-0.25})$ and $(X, a_{-0.5})$ are \mathcal{N}_{\in} -subsets of (X, g), but $(X, (d * a)_{\lor \{-0.25, -0.5\}}) = (X, b_{-0.25})$ is not an \mathcal{N}_{\in} -subset of (X, g).

Finally, we give a condition for an \mathcal{N} -subalgebra of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ to be an \mathcal{N} -subalgebra of type (\in, \in) .

Theorem 3.14. Let (X, f) be an \mathcal{N} -structure of type $(\overline{\in}, \overline{\in} \lor \overline{q})$ such that $f(x) \leq -0.5$ for all $x \in X$. Then (X, f) is an \mathcal{N} -subalgebra of type (\in, \in) .

Proof. Let $x, y \in X$ and $\alpha \in [-1, 0)$ be such that (X, x_{α_1}) and (X, y_{α_2}) are \mathcal{N}_{\in} -subsets of (X, f). Then $f(x) \leq \alpha_1$ and $f(y) \leq \alpha_2$. Since $f(x) \leq -0.5$ for all $x \in X$, it follows from (3.2) that

$$f(x * y) = \land \{f(x * y), -0.5\} \le \lor \{f(x), f(y)\} \le \lor \{\alpha_1, \alpha_2\}$$

so that $(X, (x * y)_{\vee \{\alpha_1, \alpha_2\}})$ is an \mathcal{N}_{\in} -subset of (X, f). Therefore (X, f) is an \mathcal{N} -subalgebra of type (\in, \in) .

References

- [1] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [2] Y. B. Jun, M. S. Kang, and C. H. Park, *N*-subalgebras in BCK/BCI-algebras based on point *N*-structures, Int. J. Math. Math. Sci. **2010** (2010), Article ID 303412, 9 pages.
- [3] Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algebras, Sci. Math. Jpn. 59 (2004), no. 1, 35–40.
- [4] Y. B. Jun and K. J. Lee, The essence of subtraction algebras based on N-structures, Commun. Korean Math. Soc. (to appear).
- [5] Y. B. Jun, K. J. Lee, and S. Z. Song, *N*-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417–437.
- [6] Y. B. Jun, M. A. Öztürk, and E. H. Roh, *N*-structures applied to closed ideals in BCHalgebras, Int. J. Math. Math. Sci. 2010 (2010), Article ID 943565, 9 pages.
- [7] M. Kondo and W. A. Dudek, On the transfer principle in fuzzy theory, Mathware Soft Comput. 12 (2005), no. 1, 41–55.
- [8] J. Meng and Y. B. Jun, BCK-Algebras, Kyungmoon Sa Co., Seoul, 1994.

438

KYOUNG JA LEE DEPARTMENT OF MATHEMATICS EDUCATION HANNAM UNIVERSITY DAEJEON 306-791, KOREA *E-mail address*: kjlee@hnu.kr

Young Bae Jun Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Korea *E-mail address:* skywine@gmail.com

XIAOHONG ZHANG DEPARTMENT OF MATHEMATICS SHANGHAI MARITIME UNIVERSITY SHANGHAI 201306, P. R. CHINA *E-mail address:* zxhonghz@263.net