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ERROR ESTIMATES OF SEMIDISCRETE DISCONTINUOUS
GALERKIN APPROXIMATIONS FOR THE
VISCOELASTICITY-TYPE EQUATION

M1 RAy OuM, HYuN YOUNG LEE, AND JUN YONG SHIN

ABSTRACT. In this paper, we adopt symmetric interior penalty discontin-
uous Galerkin (SIPG) methods to approximate the solution of nonlinear
viscoelasticity-type equations. We construct finite element space which
consists of piecewise continuous polynomials. We introduce an appropri-
ate elliptic-type projection and prove its approximation properties. We
construct semidiscrete discontinuous Galerkin approximations and prove
the optimal convergence in L? normed space.

1. Introduction

Let © be an open bounded convex domain in R?, d = 2, 3 with polygonal/
or polyhedral boundary 092 and let 0 < T" < oo be given. In this paper we
consider the following nonlinear viscoelasticity-type problems,

uge — V- {a(x,u)Vu + b(x,u)Vur } = f(x,u) in Qx (0,7]
(1.1) (a(z,u)Vu + b(z,u)Vus) -n=0 on 082 x (0,7
u(z,0) = uo(x), u(z,0)=wuy(z) on

where n denotes the unit outward normal vector to 9Q and wug(x) and u(z)
are given functions defined on . The initial data ug(x), u1(z), a(z,w), b(x, u)
and f(x,u) are assumed to be such that (1.1) has a sufficiently smooth solution
enough to guarantee the regularity conditions appearing in convergence results
to be presented below. For the details of the physical significance and various
properties of existence and uniqueness of the viscoelasticity-type equations, we
refer to [7, 8, 10, 14, 16] and references cited there in.

Early Nitsche [11] introduced penalty terms on the boundary of the domain
to treat Dirichlet boundary conditions. Douglas and Dupont [5] and Wheeler
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[17] generalized Nitsche’s method and introduced discontinuous Galerkin meth-
ods using interior penalties for elliptic and parabolic equations. Darlow et
al. [4], and Douglas et al. [6] applied these methods to approximate the be-
havior of the flow in porous media. These methods which are referred to as
interior penalty Galerkin methods are not locally mass conservative. On the
other hand, Oden, Babuska and Baumann [12] introduced and analyzed a new
type of discontinuous Galerkin method for diffusion problem which was shown
to be elementwise conservative. For the polynomials of degree at least 3 and
for one dimensional problems, a priori error estimates were proved. Riviere
and Wheeler [15] introduced a locally conservative discontinuous Galerkin for-
mulation for nonlinear parabolic equations and derived a priori L°°(L?) and
L?(H") error estimates. However, they achieved suboptimal convergence in
L% (L?) norm. Ohm, Lee and Shin [13] constructed a discontinuous Galerkin
approximation using interior penalty terms for nonlinear parabolic partial dif-
ferential equations and proved an optimal L°(L?) error estimate. Compared
to the classical Galerkin method, the discontinuous Galerkin method is very
well suited for adaptive control of error and can provide high order of accuracy
provided that the solution of the model problem is sufficiently smooth.

In [10], Lin and Zhang proved the global L°-convergence of semidiscrete
Galerkin approximation of the solutions to the Sobolev and viscoelasticity type
equations using an interpolation postprocessing technique. In this paper we
adopt a symmetric discontinuous Galerkin method with interior penalties to
construct semidiscrete approximate solutions. We apply symmetric interior
penalty discontinuous Galerkin methods to approximate solutions of (1.1) and
we obtain the hp convergence in L>°(L?) norm. To our knowledge, this paper
appears to be the first trial to construct semidiscrete discontinuous Galerkin ap-
proximations of viscoelasticity-type equations using symmetric interior penalty
method and prove the hp-convergence in L°°(L?) norm. This paper is orga-
nized as follows. In Section 2 we introduce several notations and preliminaries.
In Section 3 we construct finite element spaces and introduce auxiliary pro-
jection @ of the solution u of (1.1) onto finite element spaces. We prove the
projection % of u converges optimally in h for the L? norm. In Section 4, we
construct semidiscrete discontinuous Galerkin approximations and obtain the
h-optimal convergence and p-suboptimal convergence in L°(L?) norm.

2. Notations and basis assumptions

Now we make the following assumptions:
Condition (A)
there exist positive constants k and k such that k < a(z,y) < k and
k<b(z,y) <k, V(z,y) € Q2 xR,
Condition (B)
there exists positive constant k such that |%§’y)| < kand |%§’y)| <
K, V(z,y) € QA xR,
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We denote the usual inner product in L?(2) by (-,-) and the norm by || - |.
Foran s > 0,1 < p < oo and £ C R? we denote the classical Sobolev spaces by
W#P(E) with norm || - [lys.»(g). When E = Q we simply write || - |lys.r(q) as
I - IIs,p and if p = 2 we write || - |[w=» as || - ||s. And also the usual seminorm of
a function defined on E is denoted by |- |s,p and we denote simply |- |5 instead
of |- s if B = . Since we deal with time dependent problems we need
to introduce the norm of a function v mapped from [0,¢] to some underlying
Banach space X, as follows

1
¢ :
||U|LP([0,t];X)</ ||v<7>||§<d7) C1<p<oo
0

and

[[oll L o.1:x) = esssup [[o(7)]| x -
T€[0,t]
We shall abbreviate the notation LP([0,T]; X) to LP(X).

Let &, = {E1, Ea,...,EN,} be a regular quasi-uniform subdivision of
where FE; is a triangle or a quadrilateral if d = 2 and E; is a 3-simplex or
3-rectangle if d = 3. We let h; = diam(F;) be the diameter of E; and we let
h =max{h; |1 <i < Np}. We assume that &, satisfies the following regularity
condition: there exists a constant o > 0 independent of the subdivision such
that each E; contains a ball of radius ah;. And also we assume that &), satisfies
the following quasiuniformity requirement condition: there is a constant v > 0
such that h% <, Vi=12,...,Np.

3. Finite element spaces and an auxiliary projection

For an s > 0 and a given subdivision of Q, &, = {F1, Es,...,En, }, we
define the following space

He*(&) = {v e L*(Q) | v|p, € H*(E;), i=1,2,...,Np}.
Let the edges of &, be denoted by {e1,€e2,...,€er,,€L,+1, ---,€n, } Where ey, C
Q1< k< Lpand e C N, Lp+1 < k < M,. With each edge ey,
1 < k < Ly, we associate a unit outward normal vector ng to E; if e, = E;;
where E;; = 0E; NOE; and ¢ < j. For Ly, +1 < k < My, we define ng, = n
the unit outward normal vector to 9.
To present the discontinuous Galerkin scheme, we need some functions de-

fined on edges. For ¢ € H*(&,) with s > £, we define the following average
function {¢(x)},

{o(x)} =
and jump function [¢(z)]
[p(2)] = (0]g.)(x) = (¢l5,) (), Vo e€er, 1<k<Lp,

((0le,) (@) + (¢]5,)(2)), Vreer, 1<k<Ly

N =
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where e, = 0E; N OE;, i < j. We associate the following discontinuous norms
with the space H*(&), s > 2

Np,
loll* = => 615 & +h IV &,) + T5 (6, 0),
i=1
where

N =

J5(9,0) = Zleklf’/ [Ylds, 8>

is an interior penalty term and each o, V1< k < Ly is positive constant. We
choose {0} }1<r<r, such that o < o < 7, V1 <k < Ly, holds for some positive

constants o and o.

Let r be a positive integer. The finite element space is taken to be
Dp(&) ={v e L*Q) :v|g, € P(E)), j=1,2,..., Ny},

where P,(E;) denotes the set of polynomials of total degree < r on E;. Now
we state the following trace inequalities proved in [1]. In what follows, we shall
denote by C' a generic positive constant depending on €2, the subdivision &, of
€, the sobolev norms of u or the constants k, k, k but independent of A and r,
attaining in general different values in different places.

Lemma 3.1. For each E; € &, there exists a positive constant C' depending
only on a and ~y such that the two following trace inequalities hold:

1
1613,y < C (—_|¢|%,Ej n hj|¢|%,Ej) | Vo e H(E)),
J

1., , ,
- h; H2(E;
H@ng L2(e;) <hj 9135, + J|¢|2,Ej> , V¢ € H°(E;),

where e; is an edge of E; and nj is the unit outward normal vector to ;.

Now we state the following hp-approximation properties whose proofs can
be found in [2, 3, 9].

Lemma 3.2. Let E; € &, and ¢ € H*(E;). Then there exist a positive
constant C depending on s, a and y but independent of ¢, v and h and a
sequence P,¢ € P.(E;), r=1,2, ..., such that for any 0 < g < s,

u*q
¢ — Pudllwar(,) < C— e Mollwere,) 520, 1<p<oo,
bh—3 1
¢ — Prollr2(e;) < C Z sB; 5> 5
- 3
¢ — Prodllmr(e;) < C : H¢||sE 5> 5,
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where (= min(r + 1,s) and e; is an edge or a face of Ej. Moreover for
ex = L,
IV(Pad)llL(er) < ClIVOlL~(muE,)-

Remark. From Lemma 3.2, we may assume that there exists a constant K*
such that |u — Prulpe < K* where we choose K* sufficiently large so that
Cllluolls + l[ull oo crrey + lull oo (wrrooy + [[ull oo (rrey + el oo (o) + [Juel 2(ar2) <
K*.

Now we introduce the following bilinear mappings A(p; -, -),B(p; -, ), At (p; -, *)
and By(p;-,-) defined on H(E,) x HY(Ep)

A(p; ¢,0) = (a(x, )V, V) Z {a(z, p)Vo - ni}[¢lds

=176k

fZ {a:c PV - n}[glds + TG (6, ),

B(p; ¢,4) = (b, p) Ve, Vi) — Z {b(x, p)V - nx}i))ds

=1"7¢k

—Z {b(z, p) VY - s Hlds + J§ (6, ),

=1"7¢k

Ao 6,0) = ((grale, ) V6, 90) =3 / )) Vo fwlas
72/ {(Zate.p)) Ve nk}[sb]d

Bi(p:6,6) = ( (b)) Vo, Vo) Z / ))V6 - m s
- ; / k {(5ibte.0)) Ve nk}[qﬁ]ds

And we define the following weak formulation of the problem (1.1): Find
u € HY(Ey) such that
(3.1) (uge, v) + Au;u, v) + Blusug,v) = (f(2,u),v), Yo H' ().

For a A > 0 we define the following bilinear forms Ay(p;-,-) and Bx(p;-,-) on
H' (&) x H'(En) by

A/\(P;Qﬁﬂ/f) = A(P7¢a¢) + )\(Qﬁﬂ/i),
Bx(p; ¢ 9) = B(p; ¢,1) + A9, ).
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Then Ay and B, satisfy the following boundedness and coercivity properties.
The proof of Lemmas 3.4 and 3.4 with d = 1,2 are given in [13]. For d > 1,
the proofs can be obtained similarly, but for the completeness of description
we provide the proof of Lemma 3.3. Lemma 3.4 can be proved similarly so we
omit the proof.

Lemma 3.3. For a A >0 and a 8 > ﬁ if the functions a(x,y) and b(z,y)
satisfy Condition (A), then there exists a constant C > 0 independent of h and
r satisfying

[Ax(p: 6, 0) < Cllellilvlli, ¥ ¢,9 € H?(En),
1Bx(p; ¢, 9)| < Cllolillll, ¥ ¢,9 € H?(E).
Proof. Let ¢,v € H%(&E). From the definition of Ay (p, ¢,), we have

Z {a(z, )V - ni}[]ds

k=1"Y°¢k

[Ax(p; &, 9)| < [(alz, p) Vo, V)| +

{a(z,p) VY - ni}@lds

+ 15 (0,9 + Al(¢, D)

=1"Y¢k

fE1+E2+E3+E4+E5.

By Condition (A), we have E; < k ||¢[l1]|¢]l:. Applying Lemma 3.1 and the

condition 8 > d 7, we estimate E as follows

B < TS [ (T mel! [0]ds

k=1"¢k

<H(BE [ wemra) (2 [ )

Ny hd—lﬂ 1 5
§C<Z( g> [ﬁ|¢|ia+h|¢|3,&}> Il

i=1
< Cliolx -
Similarly E5 < C||¢[l1 ||#]|l1 can be obtained. By the definition of Jg(qﬁ, ), we

have
/ Y)ds
g ([ toas) ([ wpas)”

€k

< <i|€UTk|ﬂ/ek[¢]2ds>

IJﬂaﬁwI—

ol
7N
M=
=
= |2
™
T
=
[\
QL
V2)
N———
[N
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= lI8llx 1l

Trivially E5 < Al ¢[l1[|¢]l1 holds. Therefore we have |Ax(p; ¢, )| <Cll@ll1 [[]]: -
By the similar method the boundedness result for Bx(p;®, ) can be proved.
O

Lemma 3.4. ForaA>0,a8 > ﬁ and a sufficiently large o if the functions

a(z,y) and b(x,y) satisfy Condition (A), then there exists a constant ¢ > 0
independent of h and r satisfying

A\(pi¢,0) 2 € lI9lli, V¢ € Di(En),
Bi(p;#,6) > lI8ll7, ¥ ¢ € Dr(En).

The results of Lemma 3.3 and Lemma 3.4 provide the existence and unique-
ness of the following auxiliary projection w(z,t) € D,(ep) of u(x,t): Find
u(t) : [0,T] = Dy(&r) such that
(3.2) Ax(u;u — u,v) + By(u;ug — g, v) =0, Vo e D.(), Vt>D0,

' u(x,0) = Pp(up(x)), we(z,0) = Pr(ui(z)) Ve,
where P (uo(x)) and Py (uq(z)) are the projections of ug(x) and us(z), respec-
tively generated by Lemma 3.2. Now we construct the semidiscrete discontin-

uous Galerkin approximations as follows: Find U(-,t) € D,(&), Vt € (0,T]
such that

(Us,v) + A(U; U,v) + BU; Up,v) = (f(2,U),v), Vv € Dr(&n),
(3.3) U(x,0) = u(z,0) Va € Q,
Ui(z,0) = wy(x,0) Vo e Q.

To proceed the convergence of the semidiscrete approximation U(z,t) to
u(x,t), we let n(x, t) = u(:c t)—u(z,t), 0(z,t) = Pyu(x,t)—u(z,t) and £(z,t) =
U(z,t) — Uz, t). We let H(Q )*{1/}€H1( )| Vi -n = 0on 09Q}. By the
definition of Ay, By, A; and B; we have the following Lemma 3.5.

Lemma 3.5. Suppose that a(z,y) and b(x,y) satisfy Conditions (A) and (B),
then there exists a constant C > 0 such that

[Ax(u; 0, )] < Clinllll]]2,
[Bx(u; n, 9) < Cllnllll]]2;
[Ae(usn, ¥)| < Clinlllle |2,
| B (u;m, )] < Clinllll4]]2;
hold for 1 € HX(Q) N H ().
Proof. By the definition of Ay and the continuity of ¢ we have
Ax(u;n, ¥) = (ala, u)Vn, Vi) Z {a(z,u)Vn - ng}] ds

=1"7¢k
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72 {a(w, w)V -y} [n) ds + TG (0, %) + A(n, ¥)

k=1"Y°¢k

= (a(z,u)Vn, Vi) Z {a(z,w) VY - ng}n] ds + X, ).

k=1"°¢k

On the other hand, by the continuity of Vi - ng across interior edge e; and
V¥ -n =0 on 012, the following holds:

(al.wm &) = 3 [ (aaunai o

- S [ wmme msio- | Stwam v

j=1 Ej

= — (a(z,u)Vn, Vi) — Z/ a(z,u))n - Vi dx

Lp

+ /6(2 a(z,u)nVy - n ds + Z {V¢ - np}a(z,u)n] ds

k=1"Y¢k

Np
= — (a(z,u)Vn, Vi) — Z /E V(a(xz,u))n - Vi) da

+ zh: {V - ng}a(z,u)n] ds.

k=1" ¢k

Therefore
Np,
Ak(u; 77a¢) = —(G(ZE, U)Ua Al/’) - Z /E V(G(ZE, U))U : VQ/’ dx + )‘(77) 1/1)5

from which we get, |[Ax(u;n, )| < C|nlll|¥|l2. Similarly we can obtain the
results for By, A; and Bjy. O

As shown in [13] to prove the following lemma we need the regularity property
of the elliptic operator L(u)w = V - (a(x,u)Vw) + Aw with u, the solution of
the problem (1.1). The regularity result of the preceding elliptic operator can
be sufficiently obtained when 2 is a bounded open convex domain. We state
the following lemma whose proof can be found in [13].

Lemma 3.6. Suppose that F : H*(Ey) — R is a linear function and that there
exists ¢ € H?(Ey) satisfying Ba(u; ¢,v) = F(v), Yv € D.(E). If there exist
positive constants My and My satisfying

|Fw)] < Millwlh, we H? (),
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|F()] < Ms|[9p]la, @ € H*(Q) N H(Q),
then the following estimation holds
ol < Clléll + Mi)h + Ms.

Now we obtain the following approximation properties for n whose proofs can
be found in [13]. Hereafter we omit the time variable ¢ if there is no possibility
of confusion. In the remaining part of this paper we assume that a(z,y) and
b(x,y) satisfy Conditions (A) and (B).
Theorem 3.1. If ug € H®, uy € L*(H®) and B =
constant C' > 0 independent of h and r satisfying
@) IOl + hllne ()l < CFE= (luolls + lluells + lluellz2are))
(i) fln@I + Alln(@)l: < CT’J“z (lwolls + llwellL2car)),
where pp = min(r 4+ 1, s), r 2 2 ands>1+ %l.
Theorem 3.2. Ifug € H®, uy € L*(H®), uw(t) € H® and B =
exists a constant C' independent of h and r such that
(1) llmee (D)l < C}ig 7 (l[uolls + lluells + el L2y + lua@lls),
(i) IO < O35 (luolls + lluells + lluell 2gare) + luee(®)]]5),
where p=min(r +1,s), r > % and s > 1+ 4.

d 7, then there exists a

d 7, then there

Proof. (i) Differentiating both sides of (3.2) with respect to ¢, we get
(3.4)

(Gote)onwe) =3 [ {(Gotaon)wn-mfoi
fZ/ aﬁ Vv-nk}[n] ds + Ax(u;me,v) + ((gt (u ))Vm,Vv)
*Z/ 81& bz, u) Vﬁt nk dS*Z/ —bxu Vv~nk}[nt] ds

+ By (u;my,v) = 0.
By adopting the definitions of A; and B; to (3.4), we get
(3.5) Ba(u;nme,v) = —Ax(u;ne,v) — Ag(u;m,v) — Be(uyne,v), Yo € Dp(Ep).
Then by (3.5) we have
B/\(U; Ort, ett) = B/\(U; Ugp — Ut — Uge + Prity, ett)
= Bx(u;met, Ore) — Ba(u; uge — P, 04t)
= — Ax(u;me, Ose) — Ae(u;n, 04) — Be(w;ne, Oue)
- BA(U; g — Prge, Ot).-
By Lemma 3.3 and Lemma 3.4, we obtain

16:lh < CCllmellx + lnlly + lluee — Pruelr)
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which implies that
Imeelly < Nuee — Prwsell + |1 Pruee — tigellx

< luse = Prwaelly + Cllmelly + Inlly + llwee — Paweelly)-
From Lemma 3.1 we have the following estimation

(3.7) flu— Puull}

(3.6)

Np Ny,
= lu—Poullf g, + > BV (u— Paw)lld g, + J§ (u — Pou,u— Pyu)
i=1 i=1
R2(n—1) o L
< O( Sy ull2 4+ h =07 ; I = Pl 3.0, )
h2(p—1) p—(d—1)B—1
= C[TQ(S—Q) lull? + W(W“HUH?)]
h2(p—1)

< Cﬂ;ﬂ;:g;”“”i
By applying the inequality above with w4 to (3.6) we obtain the following
Ieelli < C(lluee — Pruell? + InllF + lell?)
h2(p—1)
< C gy (ol + w3 + lluell ooy + luaell2),
which implies
h#—1
(3.8) Ineelly < €= (luolls + lluells + lluellpzcrey + [lugells)-

ii) By Lemma 3.3 there exists a constant C > 0 satisfyin,
(ii) By ying
| Bx(u; 06t 0)| < Cllnelalvlly, Vo € H?(En).

By applying the definitions of A; and B; and Lemma 3.5 we have the following
estimation

| A (s e, 0)| + [Ae (s 0, 0)| + [ Be(us e, v)| < Maljolla Vo € H*(2) 0 H(Q)

with Mz = C(||ne]|+ Inll). By applying Lemma 3.6 to (3.5) with My = C/[ne|1,
we have

el < C(Allmeelly + llmell + )

hH
< O (ol + s + el paazey + el .

4. The convergence of semidiscrete discontinuous Galerkin
approximations

Before we prove the convergence of the semidiscrete approximation defined in
(3.3), we will show the existence and uniqueness of semidiscrete approximation
in the following theorem.
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Theorem 4.1. The following statements hold:

(i) If f is a continuous function, then there exists a semidiscrete discon-
tinuous Galerkin approzimation U(x,t) satisfying (3.3). Furthermore
U @) and |U(t)|| are continuous with respect to t.

(ii) In addition to the hypothesis of (i), if f is globally Lipschitz continu-
ous, i.e., there exists a constant L > 0 such that |f(xz,u) — f(z,v)| <
Lju — v|, Y(z,u), (z,v) € Q x R, then (3.3) has a unique semidiscrete
approxzimation U(x,t).

Proof. Let {¢i(x)}™, be a basis of D,(&) and U(z,t) = Y ;v a;(t)di(x).
Then (3.3) reduces to a system of nonlinear ordinary differential equations
such that

(4.1)
(Z o (t)pi(x), ¢4 ($)> +A (U; Z a;i(t)pi(x), ¢; ($)>

i=1 i=1
which implies the following initial value problem

S a’(t) = ~T(a)(t) - W(e)a + F(a),
(42) {a(O) =ap, '(0)=au,

where o = (v (t), a(t), . .., am(t))T, ap and a are initial value vectors, S =
(Sijhi<ijem, T(@) = (Tij(@))1<ij<m and W (a) = (Wi (@))1<ij<m are m X
m symmetric matrices and F(a) = (Fi (), Fa(a),..., F,(a))T is a vector.

Matrices S, T and W are defined by S;; = (¢4, ¢;), Ti; = B(U; ¢, &), Wij =
AU: ¢i,65) and Fy = (f(x,U), 6). |

Let B(t) = (a)(t),ah(t),...,al, ()T and let S be the 2m by 2m block
diagonal matrix with I, S as block diagonal elements. Pp,(ug(z)) = U(x,0) and
Pp(ui(x)) = Ug(x,0) can be represented by

U(z,0) = Z a;(0)¢;(z) and U(z,0) = Zﬁi(O)qﬁi(x).

Then (4.2) can be reduced to initial boundary value problem associated with
a system of 1st order differential equations.

(o o (2)~ Crtarsr wiormtr - )
0 s/\¥) \-T(a)B(t) - W(a)a(t) + F(a)/)’

with initial condition (a(0),3(0))T = (a1(0),...,am(0),B1(0),...,Bm(0)T.
For v = (v1,v2,...,v)T € R™ and y = (y1,¥2,.-.,¥m)? € R™ we let

m m

v(z) = szsz(if) and y(z) = Zyszz(z)

=1 =1
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Then we get
vi,y')S = vy + 195y = v; + (y,y) > 0.
v,y) (y) ;:1 ;:1 YiSijy; ;:1 (v, 9)

Therefore S is positive definite. By the continuity condition on f, and the
theory of ordinary differential equations, e (t) and B3(t) exist which completes
the proof of the existence of the semidiscrete approximation. This result suffices
to show that «;(t) and f;(t) are continuous with respect to ¢ so that ||U(¢)]|
and ||U¢(t)|| are also continuous which completes the proof of the statement
(). If the functions a and b are bounded and f is Lipschtz continuous then
there exists a unique pair of {a(t), B(¢)} by the theory of ordinary differential
equation. This completes the proof of (ii). O

Lemma 4.1. Suppose thatug € H*,u(t) € H® andu, € L*>(H®) with s > $+1.
For a A >0 and 8 =1/(d— 1), there exists a constant C satisfying
pu—1

T5_2

6@ < C( )(HuOIIS + llulls + llwells + lluell 22 ae))

and

=1
10:8)l < o= ) (lolls + lulls + uelacarey),
where p = min(r + 1,s) and r > d/2.
Proof. By Lemma 3.4 and Lemma 3.3 we obtain
1617 < CAx(u;6,0) = C(Ax(u; 0,0) — Ax(u;1,60) — Bx(u; 1, 6))
< Cllw = Prully + el ) 1012
which implies that by Theorem 3.1 and (3.7)
190 < Clw = Paully + llnell1)
=1
P )(HUOHS + lJulls + lluells + el L2(a+))-

<c(
By (3.2) we get
B (u; 6y, 0;) = Bx(u; ur + Pruy — up — Uy, 0y)
= B/\(U;Tlt; 9t) - BA(U;Ut — Prug, 91&)
= —Ax(u;n, 0;) — Bx(u;up — Prug, 04).

r

By Lemma 3.4 and Lemma 3.2, we have
prt

T572

16:02 < cClnlly + e = Pruell) < C—=5 (lluolls + lluells + llutllz2cae))- o

Lemma 4.2. For a A > 0 and 8 = 1/(d—1) there exists a constant C satisfying
if up € H%,u(t) € H*,u(t) € Wh*and u; € L>(H®), then

(1) IVt e < Clluolls + [lulls + [[ull1,00 + lluell L2(as))

(i) [Vl oo (er) < Cllluolls + llulls + llullr,oo + luells + lJwell L2 ar=))
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hold and if ug € H®,u; € L*(H®) and u(t) € WH°, then
(i) [| V|| < Clluolls + uells + luell1,00 + uell 2(ar+))
(V) VUl oo ery < Clllwolls + luells + llwellr,co + lluell 2cae))
hold, where ;1 = min(r +1,s), s > 4 +1 and r > d/2.

Proof. By Lemma 3.2 and Theorem 3.1, we note that
[Vl < [[V(u— Pru)llze + [V(Phu) = Vul Lo + [[Vul| L~
< C(hH V(@ ~ Paw)ll 2 + ulls o)
< Ch™%(||Vi — Va2 + | Vu — VPyul|z2) + Cllul|1,

p—1
<Ch*éh

5 (luolls + llulls + uell 2gare)) + Cliull1,o0
< C(IIUolls +lulls + llulltoo + luell L2are))

which completes the proof of (i). If e, = E;NE; = E;j, by Lemma 3.2, Lemma
3.1 and Lemma 4.1, we have

V]| oo (ey.)
< IV (u = Puu)|| Lo ey + IV Pt oo ey

_(d=1) ~
< Ch™ 2 |V (u = Pau)lL2(e) + ClIVull L (2,08,

_d=-1 1 ~ ~
< Ch™ = h72(|V(@ = Pou)ll r2(momy) + RIVAE = Pou)llzs,uE,)
+ Cllull1,00

_a hrl
< Chm= =5 (luolls + llulls + uells + lluellz2(are)) + Cllull,co-

This proves (ii) since ;1 > d/2+ 1. By the similar method, (iii) and (iv) can be
proved. (I

Throughout this paper €, €; and €5 denote generic positive constants sufficiently
small depending on C' and the Sobolev norms of u but independent of i and r.

Remark. By Lemma 3.2, ||u(z,0) — U(z,0)|l = |uo(z) — @(z,0)||~ =
[luo(x) — Pr(uo(x))||zee < K* holds.

Lemma 4.3. For a sufficiently small € > 0 and a generic constant C > 0 the
following estimation holds:

Z a(z,U) + b(z,U))VE - nk}[&] ds

klek

Z (2, U) 4+ b(x,U))VE - ne }E] ds

klek

<el&ll + € ((ale,U) + b(a, U))VE, VE) + J5(&,€)) -
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Proof. Since a(x,y) and b(x,y) satisfy Condition (A), we have

Z a(w,U) + bz, U))VE -} [&] ds

klek

Z a(z,U) +b(z,U))VE - ni}¢] ds

k=1 ek
Lp,
< CY (IVEl 2en 1€l 2(en) + 1VEel L2 (e €N 22 (er)
k=1

Ly,
_ 1
< (W23 Ve g N
k=1

Lp
B 1
pd 1>ﬂ/2z ||vgt||Lz<ek>|€k|—ﬂ/2ll[£]llm<ek>)

Ly,

< Chz IVEIZ e,y +ellélld +erh Y IVENTa(e,) + CIF(EE)
k=1

< €|||§t|||1 +C ((a(z,U) +b(z,U))VE, VE) + J5(£,€)) ,
where we apply Lemma 3.1 and Condition (A). O
Lemma 4.4. For a sufficiently small € > 0, if ug € H®, u(t) € H®, u(t) €
Whoou, € L2(H®), ui(t) € WH* we have the following estimations:

(1) |A)\(ua ﬂaé + gt) - A)\(U,a,é + 5t>|

< C (Inli* + R2Ivnll> + IEN%) + 3ell€l? + 3ells: s
(i) [Bx(us e, & + &) — Ba(Usur, € + &)

< C(Inl* + R2Ivnll® + l1EN?) + 3eligl? + 3ell€l?.

Proof. By the definitions of Ay, Ax(U;u,& + &) — Ax(u; @, € + &) can be sep-
arated as follows,
AU 0,64+ &) — An(ws 0, £+ &)
= ((a (éE U) — a(z,u))Vu, V(E+ &)

Z ala,U) — a(e, u)) Vi - i} +&] ds

1ek

Z —a(x,u)V(E+&) - ng}u] ds

1€k

=k + Es + Es.
Now by applying Lemma 4.2, we get
|Er| = [((a(2,U) — a(z,w)) VL, V(§ + &))|
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< ClVal[peflu = U[lIVE + V&
< C(llnll + IEDAVEN + 1VEND
< Cnl? + IEl®) + elells + el Ny

Applying Lemma 4.2 and the trace inequalities yields

Ly,
1Bol =] > [ (a2, U) = aw,u)) Vi - g + &] ds
k=1"¢k
Lp,
< OY 2 IVl e ey It = Ull e (N 22geny + N160) 22
k=1
Ly,
< C Y IVl e ey (Il 2(en) + €l 2o
k=1

1
+ el

< C(lInl* + p2Ivall* + IE117) + leli + elié: -

(d—1)B
2

1
(W 11l z2en)

By applying Lemma 3.1 and Theorem 3.1
| Es|

S [ {(a(e,U) — ale,u)V(E + &) - i) ] ds

k=1"¢k
Ly 1
<Y | Ha(,U) = a(z,w)V(E+ &) - na}n] |ds
k:ih
<O (IVEllL*(en) + IVEN Lo o)) 11 = Ul 2o 1]l 22 (er)
k=1

Np,
<O 0 (Ve aey) + IV 2e)) (h_1/2||77||L2(Ej) + 12|V 2,
j=1

+ h_1/2||£||Lz<Ej>) h72(|Inll L2,y + PIVAl L2E)))
< CUVEN+IVED Uinll + IVl + €D (luell 2oy + lluolls)
< O (Inll? + W2Ivall® + IEN%) + el + elléls,

where C' depends on |[u¢||z2(g+) and [Juglls. Combining the estimations of Ef,
FE5 and E3 we have

|AA(U7177§ + gt) - AA(U7177§ + §t|
< C(Inl” + R 0Vnll? + 1El?) + 3¢ €l + 3eléd,
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which completes the proof of (i). Similarly, by applying Lemma 4.2(iii), (iv)
we can obtain the estimation (ii) as follows
|Bx(us e, § + &) — Ba(Us g, § + &)
< C (Il + r2 IVl + NEl®) + 3ellélli + 3elél,

where C' depends on |[ug||s, [luells, [|ut 1,00 @and [Juel|L2(zs)- O

Theorem 4.2. For a A > 1 and B = 75, if ug € H*, u(t) € H* u(t) €
Whoo € L2(H?), ui(t) € WH> and uy € L?(H®) and f is locally Lipschitz
continuous at u, i.e., there exists c(u, K*) such that if |u(x,t) —v| < 2K*, then
|f(z,u(z,t)) — f(z,v)] < c(u, K*)|u(z,t) —v|, V(z,t) € Qx[0,T],Vv € R, then
there exists a constant C' > 0 independent of h and r such that

Iz

Tsf2

lu(-8) = UG DI < C—Z=5 (luolls + l[uell L2 ey + llwsell os 24)),

where p=min(r +1,s), r > % and s > 1+ 4.

Proof. From (3.1), (3.3) and the definitions of Ay and Bj we have
(uer — U + Uy — Upt, v) + Ax(us u — 0, v) + Ax(u; 0, v)
+ A\(U;u—U,v) — Ax(U; u,v) + Bx(u; (ug — Ut), v) + Ba(u; g, v)
+ BA(U;uy — Up,v) — Ba(Us g, v)

= (f(z,u) — f(z,U),v) + Mu — U,v) + Mup — Ug,v), Yo € Dp(Er).

(4.3)

Now, we choose v = £ + & as a test function in (4.3) and we apply (3.2) to get
the following

(et + &et €+ &) + AN(ws 0, €+ &) + AN(U56,€ + &) — An(Us 0, £ + &)
+ Ba(w; g, € + &) + BA(U; &, § + &) — Ba(Us g, € + &)
= (f(z,u) = f(2,U), 6+ &) + Mu— U, § + &) + Mur — Up, €+ &).
By simple computation we get
(4.4)
(&ets &) + (e, §) + AN(U5E,€) + BA(U3 6, 6) + Ax(U5€,&) + Ba(U; &, 6)
= — AW, §+ &)+ AU u,§+ &) — Balwyug, £+ &) + Ba(Us e, £+ &)
+ (f(@,u) = f(@,U),§+ &) + AMu—U,E+ &) + Mue — Up, § + &)
— (e, &+ &)-
Applying the definitions of A (U;¢&, &) and By(U; &, €) in (4.4) we obtain

(gttagt) + AA(U,§7§) + BA(U;§t7§t) =+ (gttaé)

F 5 (ale, U)VE, VE) + MEE) + TF(E6))

N %%((b(m, U)VE, VE) + A(E,€) + T5(£,€))



SEMIDISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS 845
1[0
= at( a(w, U) + b(z, U))VE, VE

Z a(z,U) + b(x,U))VE - n }[&] ds

klek

+Z/{ (2,U) 4+ b(z,U))V& - ng }[E] ds

k=1" ¢k
_AA(U,U,&"’&})+AA(U,U,§+§,§)—B)\(U,Ut,g‘i‘gt)+B)\(U,at,§+€t)
+ (f(z,u) = f(2,U),E+ &) + Mu — U, E+ &) + Mue — Up, §+ &)
— (e, €+ &)

By applying Lemma 3.4 to the above equation, we have

@8) gl + clél? + el

+ 41 (310000, 0) M )TE T + X6 6 + 5 (6.6))

< = (608~ (6 + @) + 5 (0l 0) + o0V, )
(Z (e, U) + b, U))VE - ma} (6] d
+ {(a(z,U) + b(z,U))VE& - ng}[E] d
> [ i)

+ (= Ax(u;u, € + &) + AN(U;0,€ + &)
+ (=Ba(us ug, § + &) + Ba(Us g, € + &)
+ (f(w,u) = f(@,U),§+ &) + Mu—U,E+ &)
+ Mut — U, €+ &).

To continue the proof we temporarily assume that there exists 0 < h* < 1
such that

2460
(4.6) & < C —, 0<d<1
and
(4.7) 1£@)]| L~ < K*

hold for h < h*, Vt € [0,T] and C > 0. Later we verify that these hypotheses
hold. By the hypothesis (4.6) and the inverse inequality we have

(4.8) €]l < Ch™2||&|l < ChP < C*, Wt e [0, T].
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By the hypothesis (4.6), the inverse inequality, Lemma 3.1 and Lemma 4.1 we
have

[(w = U)o < [I(w = Pru)(®)llzoe + [|(Pru = @)(#)ll Lo + [|(w = U)(#)]| 2=

h#
< O(h+ L ) (lullwos + olls + lfulls + el
+ lJuell2me)) + K~
<2K*.

Now we estimate the terms in the right hand side of (4.5). For sufficiently
small £ > 0, we have the following estimation for (n:,& + &)

|0ree, & + €| < ImeeICNEN + N&ell) < CUEN* + ellell® + Clinee -

By applying Condition (B) on the functions a and b and (4.8), we get the
following estimation.

3 (710t 0) 4 ¥, 0)VEVE )| < ClURI= VI < Clala, V)6 56),

where C' depends on ||u|| () and C*. By applying Lemma 4.3 we obtain

Z a(z,U) + b(z,U))VE - nk}[&] ds

klek

Z (2, U) 4+ b(z,U))VE - ne }E] ds

k=1 ek
<elél? + C ((a(z,U) + b(x, U))VE, VE) + JZ(€,€)) -

By applying (4.8) and the local Lipschitz property of f at u(x,t), we obtain
the estimations in the following,

|((f (@ u) = f(2,U), €+ &) < elu, K) (Il + DAL + N1
< C(llnl* + ) + el N,
A = U, + &) < Mlnll + MM AEN + lgeh) < Clnl* + IEl®) + elléel?,
[Aue = Us, €+ E)| < Alllmell + €D CEN + 1€
< Clllnell® + l1El®) + X+ e)li€el*.

Now substituting the above estimations and applying Lemma 4.3 and Lemma
4.4 in (4.5) we get

49
o (—mam? (0o 0) 4 @ U)TE VO + MO + T5(6.6)) + F1eIE

FEIGlE
< = (&) + C (Il + (alz, U) + bz, U))VE, VE) + I (€,€)
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+nll? + lrell® + BRIVl + IEN® + I€el?)-
Applying the integration by parts and Cauchy Schwarz’s inequality we have

- [ (@ 9dr < JIGOF + IO + SISO + FI€O)1?

t
0
(4.10) Co
+ / e, dr.

By integrating both sides of (4.9) from 0 to ¢ and applying (4.10), we have

SIEOI? + 3 ((ale, U) + bl U)ED), VEW) + DI + T5 (1), £1)

C t
5 ([ 1e + i)

< %III&(O)III2 + %((a(% U) + b(x, U))VE(0), VE(0)) + AEO)I* + J5 (£(0),£(0))

1 1 1
+ 71617 + 1O + 51601 + S I€ )1

t
n c( [ nal? + 1l + e + h2|||Vn|||2>dT>
0

+ C</ (((@(U) +b(U))VE, VE) + JZ(€,€) + IEl* + |||§t|"2)d7_)'
0

Adopting the initial approximations from (3.3) to the inequality above, we
obtain

illl&e(t)lll2 + %((a(:ﬂ, U) +b(z, U))VE(t), VE(#)) + (A = 1)l

t
+ 500 + 5 [ Wl +Nalfar
t t
< [ tedar+ o [ Qal + 12191 + nl? + el )ar )
0 0

+ C(/Ot (((a(a,U) + bz, U))VE, VE) + JG(E,€) + |||§|||2d7')
for A > 1. By applying the Gronwall’s Lemma, we have
& O)1P + (ate, )+ b, U))VED), VE@) + IO + T, €0)
- C/ot("'"”'Q + Rl + el + e

Applying the estimations from Theorems 3.1 and 3.2 to the above inequality
we get
(4.11)

hH
e (OIP+IEDI+T5 (€(1), £(1)) < C(TH)2(||UOII§+IIUtII%2<H3>+IIUttII%z<Hs>)-
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Combining (4.11) and Theorem 3.1 we conclude that the following optimal
error estimate holds
B

Tsf2

lu(- ) =U D <C

(luolls + [luell L2(asy + luetll L2 (ars))s

where p = min(r + 1, s).

Now we show that the hypotheses (4.6) hold. From (3.3), (4.6) obviously
holds for ¢ = 0. Now we assume that there exists 0 < ¢t* < T such that (4.6)
holds for 0 <t < t* but

hatdo

d
2
rs—2 "

(4.12) &) = C

Now we take a sequence of {t,} C [0,¢*) such that lim, . ¢, = t*. Fort =
t, the hypothesis (4.6) is satisfied and so (4.11) can be obtained for ¢t = t,, by the

~ 4
aforementioned process in this proof. Therefore ||&:(¢,)] < CT}in << hf;io .

By the continuity property of ||| with respect to ¢ proved in Theorem 4.1 we

hz 1o

get & (t*)]] < £22— which contradicts to (4.12). Therefore the hypothesis
(4.6) holds. Now we will prove that the hypothesis (4.7) holds. Obviously (4.7)
holds for ¢ = 0. Now we assume that there exists 7 € (0,7] such that (4.7)
holds for 0 <t < 7 but

(4.13) 1€ Lo = K.

Now again we take a sequence of {t,} C [0,7) such that lim,_,. ¢, = 7. For
t = t,, by applying Lemma 3.2 and Lemma 4.1 we have

1w = U)(tn) 2o
< N = Pru)(ta)llzee + [|(Pru = @) ()l + [[a(tn) = U(tn)| oo
< Chljully,o0 + [10(ta) ] o + 1€ £
hr=g-1

TS_2

<c(n+ Y Utolls + a0 + s + luells + el 2caazy) + K

where C' depends on the sobolev norms of u. Therefore for sufficiently small

h, we have ||(u—U)(tn)||lL~ < 2K*. For t = t,, we conclude that the following

property, needed to obtain the result (4.11), |f(z, u(z,v)) — f(z,U(x,t,))| <

c(u, K#)|u(z,t,) — U(x,t,)| holds. Therefore we have (4.11) holds for t = ¢,
d

so that ||£(tn)||Lee < Chrz,f (llwolls + el 2 (arey + Nweell L2(as)) < KT holds for
sufficiently small h. In Theorem 4.1 we prove the continuity of U (t) with respect
to t so we have the continuity of ||£(¢)]| L~ hence we have ||£(7)]| Lo < KT which
contradicts to (4.13), so that the hypothesis (4.7) holds. This completes the

proof of Theorem 4.2. O
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