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LP BOUNDS FOR THE PARABOLIC LITTLEWOOD-PALEY
OPERATOR ASSOCIATED TO SURFACES OF REVOLUTION

FEIXING WANG, YANPING CHEN, AND WEI YU

ABSTRACT. In this paper the authors study the LP boundedness for par-
abolic Littlewood-Paley operator

poat)@ = ([ 1Fs@r®) "

where )
Yy
Fou)= [ 2 - )y
p(y)<t p(y)
and € satisfies a condition introduced by Grafakos and Stefanov in [6].
The result in the paper extends some known results.

1. Introduction

Let ag, ..., a, be fixed real numbers, «; > 1. For fixed z € R™, the function
2
F(z,p) =1, “%a7 1s a decreasing function in p > 0. We denote the unique

solution of the equation F(z,p) =1 by p(x). In [5], Fabes and Riviere showed
that p(x) is a metric on R™, and (R™, p) is called the mixed homogeneity space
related to {a;}1 ;.
A% 0
For A >0, let Ay = < . ) Suppose that Q(x) is a real valued and
0 Ao

measurable function defined on R™. We say Q(z) is homogeneous of degree
zero with respect to Ay, if for any A > 0 and z € R™

(1.1) Q(Arz) = Q(z).

Moreover, () satisfies the following condition

(1.2) /S Q) I (2")do(a') = 0,
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where J(2') is a function defined on the unit sphere S"~! in R", which will be
defined in Section 2.

In 1966, Fabes and Riviere [5] proved that if Q € C1(S"™1) satisfying
(1.1) and (1.2), then the parabolic singular integral operator T is bounded
on LP(R™) for 1 < p < oo, where Tg is defined by

Tof() =p. | ;zg(jf

In 1976, Nagel, Riviere and Wainger [7] improved the above result. They
showed T, is still bounded on LP(R™) for 1 < p < oo if replacing € C*(S"1)
by a weaker condition Q € Llogt L(S"1).

Inspired by the works in [5] and [7], recently, Ding, Xue and Yabuta [10]
defined the parabolic Littlewood-Paley operator by

(e = ([ imners)

B Qy) .
Fou() = / ey

The authors of [10] gave the LP (1 < p < oo0) boundedness of the parabolic
Littlewood-Paley operator:

Theorem A. IfQ € LI(S" 1) (q > 1) satisfies (1.1) and (1.2), then
lua (Al < Clifllp, 1 <p <o
Note that on S™~ 1,
L9($"Y) (¢ > 1) € Llog* L(S"™1) € H ("),
Recently, Chen and Ding [2] improve Theorem A, the result is:
Theorem B. If Q€ HY(S" 1) satisfies (1.1) and (1.2), then
lua(llp < Clfllp, 1 <p <o

For a suitable mapping ® : R” — R%, we define the parabolic Littlewood-
Paley operator g o along a mapping ® on R by

hoa(f)(@) = ( / N |Fq>,t<z>|2dt>l/2,

flx—y)dy and a= Zai.
i=1

where

where

_ Q) o
Fay(z) = / S = 0wy

If d =n and ®(y) = (y1,¥2,---,Yn), then ug o is the parabolic Littlewood-
Paley operator puq.

On the other hand, we note that if a; = -+- = a, = 1, then p(z) = |z],a =n
and (R™, p) = (R™,|-]). In this case, pa o is just the classical Marcinkiewicz
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integral along surfaces of revolution, which was studied by [4]. Moveover, if
d=mnand ®(y) = (y1,Y2,---,Yn), then ug o is just the classical Marcinkiewicz
integral which was studied by many authors (See [8], [1] and [3]).

The purpose of this paper is to investigate the LP boundedness of the
parabolic Littlewood-Paley operator pg o along surfaces of revolution when
Q € Fs(S"1). For a 8 > 0, Fs(S"!) denotes the set of all Q which are
integrable over S"~! and satisfies

(1.3) sup /S 12(6)|(In

fesnfl

1 yits
df < oo.
Ol
Condition (1.3) was introduced by Grafakos and Stefanov in [6]. The exam-

ples in [6] show that there is the following relationship between Fj(S™"~1) and
H(S"1):

() Fs(s™ ) ¢ H'(S" 1) ¢ | Fa(s™ ).
B>0 B>0
We shall state our main results as follows:

Theorem 1. Let d = n+ 1, m € N, and ®(y) = (y,d(p(y))), where ¢ is
a polynomial of degree m and Wh:O = 0, where os are the all positive
integers which is less than m in {au,...,a,}. In addition, let Q € Fz(S™~1)
for some 3 > 0 and satisfies (1.1) and (1.2), then ue o is bounded on LP(R"T1)

forpe (%,2—&-26).

Corollary 1. Let d=n+1 and ®(y) = (y,d(p(y))), where ¢ is a polynomial
and daldf(t) lt=0 = 0, where ofs are the all positive integers which is less than
min {ay, ..., an}. In addition, let Q € (g5 Fs(S™ ") and satisfies (1.1) and

(1.2), then pe.q is bounded on LP(R™1) for 1 < p < .

2. Lemmas

In this section, we give some lemmas which will be used in the proof of
Theorem 1. For any x € R", set

1 = p™ COS Py - - - COS Pp—_2 COS Pp_1

To = p*? COS Py + + COS Pp_2 SN Yp_1

Tp—1 = p¥"=' COS (1 Sin Yg

Ty = p*sinpy.
Then dz = p* 1 J(p1,...,pn_1)dpdo, where a = Y7 o, do is the ele-
ment of area of S"~! and p* 1J(p1,...,¢,_1) is the Jacobian of the above
transform. In [5], it was shown there exists a constant L > 1 such that
1< J(p1y-spn_1) < Land J(p1,...,0n-1) € C((0,27)"2 x (0,7)). So,
it is easy to see that J is also a C*° function in the variable y/ € S"~!. For
simplicity, we denote still it by J(y’).
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We shall begin by establishing some notations. For a family of measures
7= {7 :k €N, t €R} on R% we define the operators A, and 7} by

AL(f)() = gj ([ la f><x>|2dt)1/2n:<f><x> = sup (Jmel 111 ) 0.

In order to prove our theorems, we need the following lemmas:

Lemma 2.1 ([9]). Let k € N. Suppose that y(t) : Rt — RFsatisfies ' (t) =

M(@) for a fixzed matrix M, and assume ~(t) doesn’t lie in an affine hyper-
plane. Then

2
/ e gy < C|77|1/k~
1

Lemma 2.2 ([9]). Suppose that N;s and o’;s are fized real numbers, ¢(t) is a
polynomial and T'(t) = (A\it®, ..., A\ut®, ¢(t)) is a function from R, to R"T1,
For suitable f, the maximal function associated to the homogeneous curve I' is
defined by

1 h
(2.1) Mi(f)(a) = sup 7 / |F(@ — T(@)|dt, h > 0.

Then for 1 < p < oo, there is a constant C' > 0, independent of )\;s, the
coefficient of ¢(t) and f, such that

(2.2) [Mp(f)lle < Cllfllze-

Lemma 2.3. Let L : R"*1 — R"™ be a linear transformation. Suppose that
there are constants Cy, Cp, B,y > 0 such that the following hold fork € N, t € R
and £ € R"T1:

(2.3) [ Thell < Co27%,

(2.4) TRt (€)] < Co27 ¥ Agri-n LE],

(2.5) Tt ()] < Co27" (In [Agyii—n LE) T if [Agyiimny LE| > 2,
(2.6) 75 ()l pe@ns1y < Co2 ¥ fllo@n1y for 1< p < oo.
Then, for

pe(335.2+0)
there exists a constant A, > 0 such that
(2.7) [A7(F)llLe@n+ry < Apll fll e @n+1y

for all f € LP(R™*'). The constant A, may depend on Co,Cp, 3,7 and n, but
it is independent of the linear transformation L.
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Proof. In the proof of Lemma 2.3, we use some idea from [4]. We may assume
that LE = (&1,...,&,) = C for € = (&1,...,&n,&nv1) € R Choose a C
function 1 : R — [0, 1] such that supp(y) C [%,4] and

(2.8) /OOO P gy o,

r

Define the Schwartz functions ¥, ¥; : R — C by

T(Er,..., &) = ¥(p*(Q))

and Ui(u) =t~ *U(Ay—1u) for t > 0 and u € R™. If we let §; represent the
Dirac delta on R, then by (2.8), for any Schwartz function f,

(2.9) flz) = /OOO(\IJt ® 1) * f(x)% = (rln2) /R(\IIQN ® 01) * f(x)ds.

Define the g-function g(f) by

9(f)(z) = (/Rl(\lf% ®41) *f(x)2d5>1/2.

By [pn Vi(2)dz = 1(0) = 0 and Littlewood-Paley theory, we have
(210) ||g(f)||Lp(Rn+1) < C||fHLp(Rn+1) for 1 < p < 0.

For s € R,k € N and Schwartz function f, let

1/2
@1)  Ho(f)@) - ( [ 10 00 57 f<x>|2dt)
and

HS(f) = ZHsk(f)
k

=1

It follows from (2.9) and Minkowski’s inequality that:

(2.12) Ar(la) < (n2) [ HLf)(@)ds.
R
Hence if we can prove that, for

p € (335.2+26)

there exist 6, > 0 and 9; > 1 such that

Cp27%% ifs >0,
(2.13) |Hyllpp << Cpls|~% ifs < —N,
Cp if —N<s5<0,
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where N > 0 depended only « and ~, then (2.7) follows from (2.12) and (2.13).
We shall first establish (2.13) for p = 2. When s > 0, by (2.4) we have
(2.14)

/R (0P (Aga o )V (€) 2t

< 02*21@/ |A2~(t—k>4|2dt
(275 +1p(¢)) 1 <27 <2(275p(())

< 0272k\/ <22041’Y(tk)€% RS 22oc”'y(tk)€721> dt
(2751 p(C)) 1 <278 <2(272p(¢)) !

< 02,2]@272 min{a; }vk /
(275+1p(¢)) "1 <27t <2(275p(¢)) 71

<22a17522a17tp(c)2a1 (Cl/)z N 2—2an7522an7tp(<)2an (Cn/)2> dt

< 02,2]6272 min{ai}'Y(k+s)/
(275 +1p(¢))~1 <27t <2(275 p(¢)) 1

(G2 e
< C(Qk(’Y‘H)‘F’Y‘S)*Q’
where & = p(Q)*¢/, 1<i<n, ¢ =(f,....¢,) € S" L
It then follows from Plancherel’s Theorem and (2.14) that
(2.15) |H, a2 < C27°,
Now let us consider the case s < 0. For given 8 > 0 and v > 0, take

—5 > max{l—l— 87’M}
¥ In2

Then for 1 < k < —s — (4/7), similar to the proof (2.14), by (2.5) we have

/R (P (Agcorr )T (6) 2t

(2.16) (In | Agq-iy () 20+A gt

- 02_%/
(27541 p(0)) 1 <2 <2(2%5 p(C)) !
< C’272k(1+’y|5+k’|)72(1+5)'

On the other hand, for s chosen above and k > —s— (4/7), by (2.4) we have
(2.17) / [0 (P (Agso+0 ) Ta (€) Pt < C272F27 2748,
R

Apply Plancherel’s Theorem again, by (2.16) and (2.17), for s chosen above we
have

||Hs,k(f)||L2(Rn+1)

(218) _ [ CO (A4l + k)OO fllageny i 1< k< —s— (4/7),
= C27 k| f paggnny it k> =5~ (4/7),
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Similar to the proof of (2.20) in [4], by (2.18), there exists N > max{l +

8 ~(1+8)
v’ log2

(2.19)
|Hsll2,2 < C Z 27k(1+7|5+k|)*(1+5)+ Z 2k2’y(s+k)}
1<k<—s—(4/7) k>—s—(4/7)
< C‘3|_(1+5) for s< —N.

}, we get

Similar to the proof of (2.21) in [4], we can prove that, for every 1 < p < oo,
there exists Cp > 0 such that for every s € R,

(2.20) [Hsllpp < Cop

Finally, by interpolating (2.15) and (2.20), (2.19) and (2.20), respectively, we
obtain (2.13) for every p in

pe (352 +26)

with 6, > 0 and 6}, > 1. Lemma 2.3 is proved. O

3. Proof of Theorem 1

The idea of proving Theorem 1 is taken from [4] and [10]. Let Q satisfies

(1.1), (1.2) and (1.3) for some 5 > 0. ®(y) = (y,d(p(y))), where ¢(t) =
dSitpait!, m € N Let Dj = {y € R* : 27 < p(y) < 2/*'} and define the

family of measures 7 = {7, : k € N, t € R} on R"™! by

_ Q(y)
yIn d =2 t/ ’
[ S wmenne =2 [ st ot 2
Then by the Minkowski inequality, we get
(3.1) poo(f) < VIn2A-(f)(x).
It is easy to see that
- Q@)
— d =92 t/ | d /
o) Il = [, el =2, )
’ gt—k+1 / ’
Q J
_ 2—t/ / | (yjtl(y )p(y—ldpdo_(y/) < COQ_k.
Sp_1 J2t—k P

In light of (3.1) and Lemma 2.3, it suffices to show that (2.4), (2.5) and (2.6)
also hold when we choose v = 1.
For (£,€,411) ER" xR, ¢/ € S" ! and \ € Z. Let

2
I)\(£7 £n+1a y/) = / ez[A/\pg.y +€"+1¢’(>\P)]dp.
1

Set A = {ai : «; is the positive integers which is less than m in{ay, ... ,an}},
and A = {1,2,...,m}\A. Then %h:o =0, where a;; € A, and A is not a
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subset of {aq,...,an}. Therefore, we get
Akpf : y/ + §n+1¢(>‘p) = pal)‘alﬁlyll +o 4t /\a"&Ly;L +&nt1 Z aj(Ap)j'
JEA
Without loss of generality, we may assume A consists of 7 distinct numbers and
let A =iy, da,...,0m—r}. If a;-s are all distinct, we get immediately

|IA(€a§n+17y/)|
—1/(n+m—r)
(33) < (|/\“1£1y’1 +o Ay + (m - T)|A§n+1|>

< (|)\a1§1yi N )\angnyu)—l/(n—&-m—r) _ |A)\§ . y/|—1/(n+m—7-).

If {a;} only consists of s distinct numbers, we suppose that a; = ag = -+ =

Uy, QU1 = " = QUyglys -« -y Qygotl, 141 =+ = O, Where s is a positive
integer with 1 < s < n, ly,ls,...,ls are positive integers such that I; + ls +
st ls=mnand a1, 00,41y -y Oyt 1., O are distinet. Obviously,

() = (£, %0t | fMtetten g0 gh iz fimer

doesn’t lie in an affine hyperplane in R*T"~". Then using Lemma 2.1 again,
there exists C' > 0 such that for any vector n = (n1,...,1,) € R",

2
/ eZi(W1+"'+Wll)tal1"r(ml+1+'“+7lll+12)tallJrlQ Foot (Mg ool 1) A ZjeK t dt
1
< C<|7ll +"'+7ll1|2 + |7711+1 +oee +7711+l2|2+"'
—1/2(s+m—r)
2 2
Mt + o ]+ (M= 1) [ A )
< C<|7ll+"'+7ll1|+|77l1+1 +"'+7711+12‘ +e
+ |77l1+~~+ls_1+1 +oeeet Wn|

SC‘ZW
j=1

Let n; = A% &;y;, we have

> —1/(s+m—r)

‘ —1/(s+m—r)

—1/(s+m—r)

A

IR (IA"“&yil e el

S (A& + -+ Ay ]) )
ZAyE -y [/ smer),

(3.3)

On the other hand, it is easy to see that
(3.4) IIx(&, Enrr, ) < 1
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From (3.3), (3.3') and (3.4)

Cln(1/ln’ - y')]**?

|I>\(£7£n+lay/)| S (1H‘A>\§|)1+6

for |Ax\E| > 2,

where 1/ = Iﬁig\ Thus, by (1.3), we get

/Sn_1 1A (€, Ens1, )Y do(y) < C(In|Axg)~ A,

Therefore,
Tkt (€, €ntn)|
= |27t/ ei(ﬁ'y+§n+1¢(ﬂ(y)))Mdy|
Diy p(y)ot
gt—k+1
= 2 / / z EApy +£n+1¢(0))9( ) (y')dpda(y’)‘
(3.5) Sn-t Jot—k

— ot [ [ et s ) )5/ o)
sn-1J1

< Crt / Lyt (€, €ni1.9) |20 |do (o)

< C27%(In|Agrg]) "

On the other hand, by (1.1), we can obtain

(3.6)
Tkt (€5 Ens1)]
=27t i (EY+Ent16(p(v))) Q(y) dy|
ply)et
e
=|2- / / (&AW +En 10D Q') ] (o (y ) dp)
b 8
|2 / / ( HE-A ' +6ns16(0)) ,ez5n+1¢(p>)g(y )J(y')do (4 )dp|
2k g
<C / W& Apy +nt18(p)) _ pi€nt10(p) HQ H‘] ’do‘ Ydp
2y S
<C

L
<C2™ /2

<02 t |A2t k€|/
§C2 k|A2t k§|

[l A 196196 dt) )

/ | A - o/ || )| 7)) | dor (e )dp

/ ni| Agi—r1g /
Q J .
[ el 2

ot— k+1

2t k+1

do(y')dp
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Clearly, (3.5) and (3.6) imply (2.4) and (2.5) hold. Finally we shall show that
(2.6) holds.

7 (f)(2)
= ilelp(\m,ﬂ | f[) ()
gt . Q@)1
=2t [ g - o)y
2t—k+l
:igﬂgft/sn,l /QH |f (@ = (A )1 ) dpdo(y)

2t
— sup2-Hit / / (@ — ®(Ag-ven, )1 dpdo(y)
tER Sn—l 2t—1

2i
<27 [ 10612 [ 15 = Rl s Mol

<ot [ 106 Melf)(e)doly).

By Lemma 2.2, we obtain ||Ms(f)|l, < C||f||p, where C > 0 is independent of
k, the coefficient of ¢(t) and f, since (2 is integrable on S™~!, thus |7} (f)]|, <
C27%|| f||,- This shows (2.7) holds. This completes the proof of Theorem 1.
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