# $L^{p}$ BOUNDS FOR THE PARABOLIC LITTLEWOOD-PALEY OPERATOR ASSOCIATED TO SURFACES OF REVOLUTION 

Feixing Wang, Yanping Chen, and Wei Yu

Abstract. In this paper the authors study the $L^{p}$ boundedness for parabolic Littlewood-Paley operator

$$
\mu_{\Phi, \Omega}(f)(x)=\left(\int_{0}^{\infty}\left|F_{\Phi, t}(x)\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2}
$$

where

$$
F_{\Phi, t}(x)=\int_{\rho(y) \leq t} \frac{\Omega(y)}{\rho(y)^{\alpha-1}} f(x-\Phi(y)) d y
$$

and $\Omega$ satisfies a condition introduced by Grafakos and Stefanov in [6]. The result in the paper extends some known results.

## 1. Introduction

Let $\alpha_{1}, \ldots, \alpha_{n}$ be fixed real numbers, $\alpha_{i} \geq 1$. For fixed $x \in \mathbb{R}^{n}$, the function $F(x, \rho)=\sum_{i=1}^{n} \frac{x_{i}{ }^{2}}{\rho^{2 \alpha_{i}}}$ is a decreasing function in $\rho>0$. We denote the unique solution of the equation $F(x, \rho)=1$ by $\rho(x)$. In [5], Fabes and Rivière showed that $\rho(x)$ is a metric on $\mathbb{R}^{n}$, and $\left(\mathbb{R}^{n}, \rho\right)$ is called the mixed homogeneity space related to $\left\{\alpha_{i}\right\}_{i=1}^{n}$.

For $\lambda>0$, let $A_{\lambda}=\left(\begin{array}{ccc}\lambda^{\alpha_{1}} & & \\ & & 0 \\ & \ddots & \\ 0 & & \lambda^{\alpha_{n}}\end{array}\right)$. Suppose that $\Omega(x)$ is a real valued and measurable function defined on $\mathbb{R}^{n}$. We say $\Omega(x)$ is homogeneous of degree zero with respect to $A_{\lambda}$, if for any $\lambda>0$ and $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\Omega\left(A_{\lambda} x\right)=\Omega(x) . \tag{1.1}
\end{equation*}
$$

Moreover, $\Omega(x)$ satisfies the following condition

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) J\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{1.2}
\end{equation*}
$$

Received April 13, 2011.
2010 Mathematics Subject Classification. 42B20, 42B25.
Key words and phrases. parabolic Littlewood-Paley operator, rough kernel, surfaces of revolution.

The research was supported by NSF of China (Grant: No. 10901017), NCET and the Fundamental Research Funds for the Central Universities.
where $J\left(x^{\prime}\right)$ is a function defined on the unit sphere $S^{n-1}$ in $\mathbb{R}^{n}$, which will be defined in Section 2.

In 1966, Fabes and Rivière [5] proved that if $\Omega \in C^{1}\left(S^{n-1}\right)$ satisfying (1.1) and (1.2), then the parabolic singular integral operator $T_{\Omega}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$, where $T_{\Omega}$ is defined by

$$
T_{\Omega} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} \frac{\Omega(y)}{\rho(y)^{\alpha}} f(x-y) d y \quad \text { and } \quad \alpha=\sum_{i=1}^{n} \alpha_{i} .
$$

In 1976, Nagel, Rivière and Wainger [7] improved the above result. They showed $T_{\Omega}$ is still bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$ if replacing $\Omega \in C^{1}\left(S^{n-1}\right)$ by a weaker condition $\Omega \in L \log ^{+} L\left(S^{n-1}\right)$.

Inspired by the works in [5] and [7], recently, Ding, Xue and Yabuta [10] defined the parabolic Littlewood-Paley operator by

$$
\mu_{\Omega}(f)(x)=\left(\int_{0}^{\infty}\left|F_{\Omega, t}(x)\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2}
$$

where

$$
F_{\Omega, t}(x)=\int_{\rho(y) \leq t} \frac{\Omega(y)}{\rho(y)^{\alpha-1}} f(x-y) d y
$$

The authors of [10] gave the $L^{p}(1<p<\infty)$ boundedness of the parabolic Littlewood-Paley operator:
Theorem A. If $\Omega \in L^{q}\left(S^{n-1}\right)(q>1)$ satisfies (1.1) and (1.2), then

$$
\left\|\mu_{\Omega}(f)\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty
$$

Note that on $S^{n-1}$,

$$
L^{q}\left(S^{n-1}\right)(q>1) \subsetneq L \log ^{+} L\left(S^{n-1}\right) \subsetneq H^{1}\left(S^{n-1}\right)
$$

Recently, Chen and Ding [2] improve Theorem A, the result is:
Theorem B. If $\Omega \in H^{1}\left(S^{n-1}\right)$ satisfies (1.1) and (1.2), then

$$
\left\|\mu_{\Omega}(f)\right\|_{p} \leq C\|f\|_{p}, \quad 1<p<\infty
$$

For a suitable mapping $\Phi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{d}$, we define the parabolic LittlewoodPaley operator $\mu_{\Phi, \Omega}$ along a mapping $\Phi$ on $\mathbb{R}^{d}$ by

$$
\mu_{\Phi, \Omega}(f)(x)=\left(\int_{0}^{\infty}\left|F_{\Phi, t}(x)\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2}
$$

where

$$
F_{\Phi, t}(x)=\int_{\rho(y) \leq t} \frac{\Omega(y)}{\rho(y)^{\alpha-1}} f(x-\Phi(y)) d y
$$

If $d=n$ and $\Phi(y)=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, then $\mu_{\Phi, \Omega}$ is the parabolic LittlewoodPaley operator $\mu_{\Omega}$.

On the other hand, we note that if $\alpha_{1}=\cdots=\alpha_{n}=1$, then $\rho(x)=|x|, \alpha=n$ and $\left(\mathbb{R}^{n}, \rho\right)=\left(\mathbb{R}^{n},|\cdot|\right)$. In this case, $\mu_{\Phi, \Omega}$ is just the classical Marcinkiewicz
integral along surfaces of revolution, which was studied by [4]. Moveover, if $d=n$ and $\Phi(y)=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, then $\mu_{\Phi, \Omega}$ is just the classical Marcinkiewicz integral which was studied by many authors (See [8], [1] and [3]).

The purpose of this paper is to investigate the $L^{p}$ boundedness of the parabolic Littlewood-Paley operator $\mu_{\Phi, \Omega}$ along surfaces of revolution when $\Omega \in F_{\beta}\left(S^{n-1}\right)$. For a $\beta>0, F_{\beta}\left(S^{n-1}\right)$ denotes the set of all $\Omega$ which are integrable over $S^{n-1}$ and satisfies

$$
\begin{equation*}
\sup _{\xi \in S^{n-1}} \int_{S^{n-1}}|\Omega(\theta)|\left(\ln \frac{1}{|\theta \cdot \xi|}\right)^{1+\beta} d \theta<\infty . \tag{1.3}
\end{equation*}
$$

Condition (1.3) was introduced by Grafakos and Stefanov in [6]. The examples in [6] show that there is the following relationship between $F_{\beta}\left(S^{n-1}\right)$ and $H^{1}\left(S^{n-1}\right)$ :

$$
\bigcap_{\beta>0} F_{\beta}\left(S^{n-1}\right) \nsubseteq H^{1}\left(S^{n-1}\right) \nsubseteq \bigcup_{\beta>0} F_{\beta}\left(S^{n-1}\right)
$$

We shall state our main results as follows:
Theorem 1. Let $d=n+1, m \in \mathbb{N}$, and $\Phi(y)=(y, \phi(\rho(y)))$, where $\phi$ is a polynomial of degree $m$ and $\left.\frac{d^{\alpha_{i}} \phi(t)}{d t}\right|_{t=0}=0$, where $\alpha_{i}^{\prime}$ s are the all positive integers which is less than $m$ in $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. In addition, let $\Omega \in F_{\beta}\left(S^{n-1}\right)$ for some $\beta>0$ and satisfies (1.1) and (1.2), then $\mu_{\Phi, \Omega}$ is bounded on $L^{p}\left(\mathbb{R}^{n+1}\right)$ for $p \in\left(\frac{2+2 \beta}{1+2 \beta}, 2+2 \beta\right)$.

Corollary 1. Let $d=n+1$ and $\Phi(y)=(y, \phi(\rho(y)))$, where $\phi$ is a polynomial and $\left.\frac{d^{\alpha_{i}} \phi(t)}{d t}\right|_{t=0}=0$, where $\alpha_{i}^{\prime} s$ are the all positive integers which is less than $m$ in $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. In addition, let $\Omega \in \bigcap_{\beta>0} F_{\beta}\left(S^{n-1}\right)$ and satisfies (1.1) and (1.2), then $\mu_{\Phi, \Omega}$ is bounded on $L^{p}\left(\mathbb{R}^{n+1}\right)$ for $1<p<\infty$.

## 2. Lemmas

In this section, we give some lemmas which will be used in the proof of Theorem 1. For any $x \in \mathbb{R}^{n}$, set

$$
\begin{aligned}
& x_{1}=\rho^{\alpha_{1}} \cos \varphi_{1} \cdots \cos \varphi_{n-2} \cos \varphi_{n-1} \\
& x_{2}=\rho^{\alpha_{2}} \cos \varphi_{1} \cdots \cos \varphi_{n-2} \sin \varphi_{n-1} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& x_{n-1}=\rho^{\alpha_{n-1}} \cos \varphi_{1} \sin \varphi_{2} \\
& x_{n}=\rho^{\alpha_{n}} \sin \varphi_{1} .
\end{aligned}
$$

Then $d x=\rho^{\alpha-1} J\left(\varphi_{1}, \ldots, \varphi_{n-1}\right) d \rho d \sigma$, where $\alpha=\sum_{i=1}^{n} \alpha_{i}, d \sigma$ is the element of area of $S^{n-1}$ and $\rho^{\alpha-1} J\left(\varphi_{1}, \ldots, \varphi_{n-1}\right)$ is the Jacobian of the above transform. In [5], it was shown there exists a constant $L \geq 1$ such that $1 \leq J\left(\varphi_{1}, \ldots, \varphi_{n-1}\right) \leq L$ and $J\left(\varphi_{1}, \ldots, \varphi_{n-1}\right) \in C^{\infty}\left((0,2 \pi)^{n-2} \times(0, \pi)\right)$. So, it is easy to see that $J$ is also a $C^{\infty}$ function in the variable $y^{\prime} \in S^{n-1}$. For simplicity, we denote still it by $J\left(y^{\prime}\right)$.

We shall begin by establishing some notations. For a family of measures $\tau=\left\{\tau_{k, t}: k \in \mathbb{N}, t \in \mathbb{R}\right\}$ on $\mathbb{R}^{d}$, we define the operators $\Delta_{\tau}$ and $\tau_{k}^{*}$ by

$$
\Delta_{\tau}(f)(x)=\sum_{k=1}^{\infty}\left(\int_{\mathbb{R}}\left|\left(\tau_{k, t} * f\right)(x)\right|^{2} d t\right)^{1 / 2}, \tau_{k}^{*}(f)(x)=\sup _{t \in \mathbb{R}}\left(\left|\tau_{k, t}\right| *|f|\right)(x)
$$

In order to prove our theorems, we need the following lemmas:
Lemma 2.1 ([9]). Let $k \in \mathbb{N}$. Suppose that $\gamma(t): \mathbb{R}^{+} \mapsto \mathbb{R}^{k}$ satisfies $\gamma^{\prime}(t)=$ $M\left(\frac{\gamma(t)}{t}\right)$ for a fixed matrix $M$, and assume $\gamma(t)$ doesn't lie in an affine hyperplane. Then

$$
\int_{1}^{2} e^{i \gamma(t) \cdot \eta} d t \leq C|\eta|^{1 / k}
$$

Lemma 2.2 ([9]). Suppose that $\lambda_{j}^{\prime} s$ and $\alpha_{j}^{\prime} s$ are fixed real numbers, $\phi(t)$ is a polynomial and $\Gamma(t)=\left(\lambda_{1} t^{\alpha_{1}}, \ldots, \lambda_{n} t^{\alpha_{n}}, \phi(t)\right)$ is a function from $\mathbb{R}_{+}$to $\mathbb{R}^{n+1}$. For suitable $f$, the maximal function associated to the homogeneous curve $\Gamma$ is defined by

$$
\begin{equation*}
M_{\Gamma}(f)(x)=\sup _{h} \frac{1}{h} \int_{0}^{h}|f(x-\Gamma(t))| d t, h>0 \tag{2.1}
\end{equation*}
$$

Then for $1<p \leq \infty$, there is a constant $C>0$, independent of $\lambda_{j}^{\prime} s$, the coefficient of $\phi(t)$ and $f$, such that

$$
\begin{equation*}
\left\|M_{\Gamma}(f)\right\|_{L^{p}} \leq C\|f\|_{L^{p}} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. Let $L: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Suppose that there are constants $C_{0}, C_{p}, \beta, \gamma>0$ such that the following hold for $k \in \mathbb{N}, t \in \mathbb{R}$ and $\xi \in \mathbb{R}^{n+1}$ :

$$
\begin{gather*}
\left\|\tau_{k, t}\right\| \leq C_{0} 2^{-k},  \tag{2.3}\\
\left|\widehat{\tau_{k, t}}(\xi)\right| \leq C_{0} 2^{-k}\left|A_{2 \gamma(t-k)} L \xi\right|,  \tag{2.4}\\
\left|\widehat{\tau_{k, t}}(\xi)\right| \leq C_{0} 2^{-k}\left(\ln \left|A_{2 \gamma(t-k)} L \xi\right|\right)^{-(1+\beta)} \quad \text { if }\left|A_{2 \gamma(t-k)} L \xi\right|>2,  \tag{2.5}\\
\left\|\tau_{k}^{*}(f)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq C_{p} 2^{-k}\|f\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \text { for } 1<p<\infty . \tag{2.6}
\end{gather*}
$$

Then, for

$$
p \in\left(\frac{2+2 \beta}{1+2 \beta}, 2+\beta\right)
$$

there exists a constant $A_{p}>0$ such that

$$
\begin{equation*}
\left\|\Delta_{\tau}(f)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq A_{p}\|f\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \tag{2.7}
\end{equation*}
$$

for all $f \in L^{p}\left(\mathbb{R}^{n+1}\right)$. The constant $A_{p}$ may depend on $C_{0}, C_{p}, \beta, \gamma$ and $n$, but it is independent of the linear transformation $L$.

Proof. In the proof of Lemma 2.3, we use some idea from [4]. We may assume that $L \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)=\zeta$ for $\xi=\left(\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}\right) \in \mathbb{R}^{n+1}$. Choose a $C^{\infty}$ function $\psi: \mathbb{R} \rightarrow[0,1]$ such that $\operatorname{supp}(\psi) \subset\left[\frac{1}{4}, 4\right]$ and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\psi(r)}{r} d r=2 \tag{2.8}
\end{equation*}
$$

Define the Schwartz functions $\Psi, \Psi_{t}: \mathbb{R}^{n} \rightarrow C$ by

$$
\widehat{\Psi}\left(\xi_{1}, \ldots, \xi_{n}\right)=\psi\left(\rho^{2}(\zeta)\right)
$$

and $\Psi_{t}(u)=t^{-\alpha} \Psi\left(A_{t^{-1}} u\right)$ for $t>0$ and $u \in \mathbb{R}^{n}$. If we let $\delta_{1}$ represent the Dirac delta on $\mathbb{R}$, then by (2.8), for any Schwartz function $f$,

$$
\begin{equation*}
f(x)=\int_{0}^{\infty}\left(\Psi_{t} \otimes \delta_{1}\right) * f(x) \frac{d t}{t}=(r \ln 2) \int_{\mathbb{R}}\left(\Psi_{2^{r s}} \otimes \delta_{1}\right) * f(x) d s \tag{2.9}
\end{equation*}
$$

Define the $g$-function $g(f)$ by

$$
g(f)(x)=\left(\int_{\mathbb{R}}\left|\left(\Psi_{2^{\gamma s}} \otimes \delta_{1}\right) * f(x)\right|^{2} d s\right)^{1 / 2}
$$

By $\int_{\mathbb{R}^{n}} \Psi_{t}(z) d z=\psi(0)=0$ and Littlewood-Paley theory, we have

$$
\begin{equation*}
\|g(f)\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \text { for } 1<p<\infty \tag{2.10}
\end{equation*}
$$

For $s \in \mathbb{R}, k \in \mathbb{N}$ and Schwartz function $f$, let

$$
\begin{equation*}
H_{s, k}(f)(x)=\left(\int_{\mathbb{R}}\left|\left(\Psi_{2 \gamma(s+t)} \otimes \delta_{1}\right) * \tau_{k, t} * f(x)\right|^{2} d t\right)^{1 / 2} \tag{2.11}
\end{equation*}
$$

and

$$
H_{s}(f)=\sum_{k=1}^{\infty} H_{s, k}(f)
$$

It follows from (2.9) and Minkowski's inequality that:

$$
\begin{equation*}
\Delta_{\tau}(f)(x) \leq(\gamma \ln 2) \int_{\mathbb{R}} H_{s}(f)(x) d s \tag{2.12}
\end{equation*}
$$

Hence if we can prove that, for

$$
p \in\left(\frac{2+2 \beta}{1+2 \beta}, 2+2 \beta\right)
$$

there exist $\theta_{p}>0$ and $\theta_{p}^{\prime}>1$ such that

$$
\left\|H_{s}\right\|_{p, p} \leq \begin{cases}C_{p} 2^{-s \theta_{p}} & \text { if } s>0  \tag{2.13}\\ C_{p}|s|^{-\theta_{p}^{\prime}} & \text { if } s<-N \\ C_{p} & \text { if }-N \leq s \leq 0\end{cases}
$$

where $N>0$ depended only $\alpha$ and $\gamma$, then (2.7) follows from (2.12) and (2.13). We shall first establish (2.13) for $p=2$. When $s>0$, by (2.4) we have (2.14)

$$
\begin{aligned}
& \int_{\mathbb{R}}\left|\psi\left(\rho^{2}\left(A_{2 \gamma(s+t)} \zeta\right)\right) \widehat{\tau_{k, t}}(\xi)\right|^{2} d t \\
\leq & C 2^{-2 k} \int_{\left(2^{\gamma s+1} \rho(\zeta)\right)^{-1} \leq 2^{\gamma t} \leq 2\left(2^{\gamma s} \rho(\zeta)\right)^{-1}}\left|A_{2 \gamma(t-k)} \zeta\right|^{2} d t \\
\leq & C 2^{-2 k} \int_{\left(2^{\gamma s+1} \rho(\zeta)\right)^{-1} \leq 2^{\gamma t} \leq 2\left(2^{\gamma s} \rho(\zeta)\right)^{-1}}\left(2^{2 \alpha_{1} \gamma(t-k)} \xi_{1}^{2}+\cdots+2^{2 \alpha_{n} \gamma(t-k)} \xi_{n}^{2}\right) d t \\
\leq & C 2^{-2 k} 2^{-2 \min \left\{\alpha_{i}\right\} \gamma k} \int_{\left(2^{\gamma s+1} \rho(\zeta)\right)^{-1} \leq 2^{\gamma t} \leq 2\left(2^{\gamma s} \rho(\zeta)\right)^{-1}} \\
& \left(2^{-2 \alpha_{1} \gamma s} 2^{2 \alpha_{1} \gamma t} \rho(\zeta)^{2 \alpha_{1}}\left(\zeta_{1}^{\prime}\right)^{2}+\cdots+2^{-2 \alpha_{n} \gamma s} 2^{2 \alpha_{n} \gamma t} \rho(\zeta)^{2 \alpha_{n}}\left(\zeta_{n}{ }^{\prime}\right)^{2}\right) d t \\
\leq & C 2^{-2 k} 2^{-2 \min \left\{\alpha_{i}\right\} \gamma(k+s)} \int_{\left(2^{\gamma s+1} \rho(\zeta)\right)^{-1} \leq 2^{\gamma t} \leq 2\left(2^{\gamma s} \rho(\zeta)\right)^{-1}}\left(\left(\zeta_{1}^{\prime}\right)^{2}+\cdots+\left(\zeta_{n}{ }^{\prime}\right)^{2}\right) d t \\
\leq & C\left(2^{k(\gamma+1)+\gamma s}\right)^{-2},
\end{aligned}
$$

where $\xi_{i}=\rho(\zeta)^{\alpha_{i}} \zeta_{i}^{\prime}, 1 \leq i \leq n, \zeta^{\prime}=\left(\zeta_{1}^{\prime}, \ldots, \zeta_{n}^{\prime}\right) \in S^{n-1}$.
It then follows from Plancherel's Theorem and (2.14) that

$$
\begin{equation*}
\left\|H_{s}\right\|_{2,2} \leq C 2^{-\gamma s} . \tag{2.15}
\end{equation*}
$$

Now let us consider the case $s<0$. For given $\beta>0$ and $\gamma>0$, take

$$
-s>\max \left\{1+\frac{8}{\gamma}, \frac{\gamma(1+\beta)}{\ln 2}\right\} .
$$

Then for $1 \leq k<-s-(4 / \gamma)$, similar to the proof (2.14), by (2.5) we have

$$
\begin{align*}
& \int_{\mathbb{R}}\left|\psi\left(\rho^{2}\left(A_{2^{\gamma(s+t)}} \zeta\right)\right) \widehat{\tau_{k, t}}(\xi)\right|^{2} d t \\
\leq & C 2^{-2 k} \int_{\left(2^{\gamma s+1} \rho(\zeta)\right)^{-1} \leq 2^{\gamma t} \leq 2\left(2^{\gamma s} \rho(\zeta)\right)^{-1}}\left(\ln \left|A_{2^{\gamma(t-k)}} \zeta\right|\right)^{-2(1+\beta)} d t  \tag{2.16}\\
\leq & C 2^{-2 k}(1+\gamma|s+k|)^{-2(1+\beta)}
\end{align*}
$$

On the other hand, for $s$ chosen above and $k \geq-s-(4 / \gamma)$, by (2.4) we have

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\psi\left(\rho^{2}\left(A_{2 \gamma(s+t)} \zeta\right)\right) \widehat{\tau_{k, t}}(\xi)\right|^{2} d t \leq C 2^{-2 k} 2^{-2 \gamma(s+k)} \tag{2.17}
\end{equation*}
$$

Apply Plancherel's Theorem again, by (2.16) and (2.17), for $s$ chosen above we have

$$
\begin{align*}
& \left\|H_{s, k}(f)\right\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} \\
\leq & \begin{cases}C 2^{-k}(1+\gamma|s+k|)^{-(1+\beta)}\|f\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} & \text { if } 1 \leq k<-s-(4 / \gamma), \\
C 2^{-k} 2^{-\gamma(s+k)}\|f\|_{L^{2}\left(\mathbb{R}^{n+1}\right)} & \text { if } k \geq-s-(4 / \gamma),\end{cases} \tag{2.18}
\end{align*}
$$

Similar to the proof of (2.20) in [4], by (2.18), there exists $N>\max \{1+$ $\left.\frac{8}{\gamma}, \frac{\gamma(1+\beta)}{\log 2}\right\}$, we get

$$
\begin{align*}
\left\|H_{s}\right\|_{2,2} & \leq C\left\{\sum_{1 \leq k<-s-(4 / \gamma)} 2^{-k}(1+\gamma|s+k|)^{-(1+\beta)}+\sum_{k \geq-s-(4 / \gamma)} 2^{-k} 2^{-\gamma(s+k)}\right\}  \tag{2.19}\\
& \leq C|s|^{-(1+\beta)} \quad \text { for } \quad s<-N
\end{align*}
$$

Similar to the proof of (2.21) in [4], we can prove that, for every $1<p<\infty$, there exists $C_{p}>0$ such that for every $s \in \mathbb{R}$,

$$
\begin{equation*}
\left\|H_{s}\right\|_{p, p} \quad \leq C_{p} \tag{2.20}
\end{equation*}
$$

Finally, by interpolating (2.15) and (2.20), (2.19) and (2.20), respectively, we obtain (2.13) for every $p$ in

$$
p \in\left(\frac{2+2 \beta}{1+2 \beta}, 2+2 \beta\right)
$$

with $\theta_{p}>0$ and $\theta_{p}^{\prime}>1$. Lemma 2.3 is proved.

## 3. Proof of Theorem 1

The idea of proving Theorem 1 is taken from [4] and [10]. Let $\Omega$ satisfies (1.1), (1.2) and (1.3) for some $\beta>0 . \quad \Phi(y)=(y, \phi(\rho(y)))$, where $\phi(t)=$ $\sum_{j=0}^{m} a_{j} t^{j}, m \in \mathbb{N}$. Let $D_{j}=\left\{y \in \mathbb{R}^{n}: 2^{j}<\rho(y) \leq 2^{j+1}\right\}$ and define the family of measures $\tau=\left\{\tau_{k, t}: k \in \mathbb{N}, t \in \mathbb{R}\right\}$ on $\mathbb{R}^{n+1}$ by

$$
\int_{\mathbb{R}^{n+1}} f\left(y, y_{n+1}\right) d \tau_{k, t}=2^{-t} \int_{D_{t-k}} f(y, \phi(\rho(y))) \frac{\Omega(y)}{\rho(y)^{\alpha-1}} d y .
$$

Then by the Minkowski inequality, we get

$$
\begin{equation*}
\mu_{\Phi, \Omega}(f) \leq \sqrt{\ln 2} \Delta_{\tau}(f)(x) \tag{3.1}
\end{equation*}
$$

It is easy to see that

$$
\begin{align*}
\left\|\tau_{k, t}\right\| & =\int_{\mathbb{R}^{n+1}}\left|d \tau_{k, t}\right|=2^{-t} \int_{D_{t-k}} \frac{\left|\Omega\left(y^{\prime}\right)\right|}{\rho(y)^{\alpha-1}} d \sigma\left(y^{\prime}\right) \\
& =2^{-t} \int_{S_{n-1}} \int_{2^{t-k}}^{2^{t-k+1}} \frac{\left|\Omega\left(y^{\prime}\right)\right| J\left(y^{\prime}\right)}{\rho^{\alpha-1}} \rho^{\alpha-1} d \rho d \sigma\left(y^{\prime}\right)<C_{0} 2^{-k} \tag{3.2}
\end{align*}
$$

In light of (3.1) and Lemma 2.3, it suffices to show that (2.4), (2.5) and (2.6) also hold when we choose $\gamma=1$.

For $\left(\xi, \xi_{n+1}\right) \in \mathbb{R}^{n} \times \mathbb{R}, y^{\prime} \in S^{n-1}$, and $\lambda \in \mathbb{Z}$. Let

$$
I_{\lambda}\left(\xi, \xi_{n+1}, y^{\prime}\right)=\int_{1}^{2} e^{i\left[A_{\lambda \rho} \xi \cdot y^{\prime}+\xi_{n+1} \phi(\lambda \rho)\right]} d \rho
$$

Set $\Lambda=\left\{\alpha_{i}: \alpha_{i}\right.$ is the positive integers which is less than $m$ in $\left.\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right\}$, and $\bar{\Lambda}=\{1,2, \ldots, m\} \backslash \Lambda$. Then $\left.\frac{d^{\alpha_{i}} \phi(t)}{d t}\right|_{t=0}=0$, where $\alpha_{i} \in \Lambda$, and $\bar{\Lambda}$ is not a
subset of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Therefore, we get

$$
A_{\lambda \rho} \xi \cdot y^{\prime}+\xi_{n+1} \phi(\lambda \rho)=\rho^{\alpha_{1}} \lambda^{\alpha_{1}} \xi_{1} y_{1}^{\prime}+\cdots+\rho^{\alpha_{n}} \lambda^{\alpha_{n}} \xi_{n} y_{n}^{\prime}+\xi_{n+1} \sum_{j \in \bar{\Lambda}} a_{j}(\lambda \rho)^{j} .
$$

Without loss of generality, we may assume $\Lambda$ consists of $r$ distinct numbers and let $\bar{\Lambda}=\left\{i_{1}, i_{2}, \ldots, i_{m-r}\right\}$. If $\alpha_{j}^{\prime} s$ are all distinct, we get immediately

$$
\begin{align*}
& \left|I_{\lambda}\left(\xi, \xi_{n+1}, y^{\prime}\right)\right| \\
\leq & \left(\left|\lambda^{\alpha_{1}} \xi_{1} y_{1}^{\prime}\right|+\cdots+\left|\lambda^{\alpha_{n}} \xi_{n} y_{n}^{\prime}\right|+(m-r)\left|\lambda \xi_{n+1}\right|\right)^{-1 /(n+m-r)}  \tag{3.3}\\
\leq & \left(\left|\lambda^{\alpha_{1}} \xi_{1} y_{1}^{\prime}+\cdots+\lambda^{\alpha_{n}} \xi_{n} y_{n}^{\prime}\right|\right)^{-1 /(n+m-r)}=\left|A_{\lambda} \xi \cdot y^{\prime}\right|^{-1 /(n+m-r)}
\end{align*}
$$

If $\left\{\alpha_{j}\right\}$ only consists of $s$ distinct numbers, we suppose that $\alpha_{1}=\alpha_{2}=\cdots=$ $\alpha_{l_{1}}, \alpha_{l_{1}+1}=\cdots=\alpha_{l_{1}+l_{2}}, \ldots, \alpha_{l_{1}+\cdots+l_{s-1}+1}=\cdots=\alpha_{n}$, where $s$ is a positive integer with $1 \leq s \leq n, l_{1}, l_{2}, \ldots, l_{s}$ are positive integers such that $l_{1}+l_{2}+$ $\cdots+l_{s}=n$ and $\alpha_{1}, \alpha_{l_{1}+l_{2}}, \ldots, \alpha_{l_{1}+\cdots+l_{s-1}}, \alpha_{n}$ are distinct. Obviously,

$$
\gamma(t)=\left(t^{\alpha_{1}}, t^{\alpha_{l_{1}+l_{2}}}, \ldots, t^{\alpha_{l_{1}+\cdots+l_{s-1}}}, t^{\alpha_{n}}, t^{i_{1}}, t^{i_{2}}, \ldots, t^{i_{m-r}}\right)
$$

doesn't lie in an affine hyperplane in $\mathbb{R}^{s+m-r}$. Then using Lemma 2.1 again, there exists $C>0$ such that for any vector $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \int_{1}^{2} e^{2 i\left(\eta_{1}+\cdots+\eta_{l_{1}}\right) t^{\alpha_{l_{1}}}+\left(\eta_{l_{1}+1}+\cdots+\eta_{\left.l_{1}+l_{2}\right)}\right) t^{\alpha_{1}+l_{2}}+\cdots+\left(\eta_{l_{1}+\cdots+l_{s-1}+1}+\cdots+\eta_{n}\right) t^{\alpha_{n}}+\lambda \xi_{n+1} \sum_{j \in \bar{\Lambda}} t^{j}} d t \\
& \leq C\left(\left|\eta_{1}+\cdots+\eta_{l_{1}}\right|^{2}+\left|\eta_{l_{1}+1}+\cdots+\eta_{l_{1}+l_{2}}\right|^{2}+\cdots\right. \\
& \left.+\left|\eta_{l_{1}+\cdots+l_{s-1}+1}+\cdots+\eta_{n}\right|^{2}+(m-r)\left|\lambda \xi_{n+1}\right|^{2}\right)^{-1 / 2(s+m-r)} \\
& \leq C\left(\left|\eta_{1}+\cdots+\eta_{l_{1}}\right|+\left|\eta_{l_{1}+1}+\cdots+\eta_{l_{1}+l_{2}}\right|+\cdots\right. \\
& \left.+\left|\eta_{l_{1}+\cdots+l_{s-1}+1}+\cdots+\eta_{n}\right|\right)^{-1 /(s+m-r)} \\
& \leq C\left|\sum_{j=1}^{n} \eta_{j}\right|^{-1 /(s+m-r)} .
\end{aligned}
$$

Let $\eta_{j}=\lambda^{\alpha_{j}} \xi_{j} y_{j}^{\prime}$, we have

$$
\begin{align*}
\left|I_{\lambda}\left(\xi, \xi_{n+1}, y\right)\right| & \leq\left(\left|\lambda^{\alpha_{1}} \xi_{1} y_{1}^{\prime}\right|+\cdots+\left|\lambda^{\alpha_{n}} \xi_{n} y_{n}^{\prime}\right|\right)^{-1 /(s+m-r)} \\
& \leq\left(\left|\lambda^{\alpha_{1}} \xi_{1} y_{1}^{\prime}+\cdots+\lambda^{\alpha_{n}} \xi_{n} y_{n}^{\prime}\right|\right)^{-1 /(s+m-r)} \\
& =\left|A_{\lambda} \xi \cdot y^{\prime}\right|^{-1 /(s+m-r)}
\end{align*}
$$

On the other hand, it is easy to see that

$$
\begin{equation*}
\left|I_{\lambda}\left(\xi, \xi_{n+1}, y^{\prime}\right)\right| \leq 1 \tag{3.4}
\end{equation*}
$$

From (3.3), (3.3') and (3.4)

$$
\left|I_{\lambda}\left(\xi, \xi_{n+1}, y^{\prime}\right)\right| \leq \frac{C\left[\ln \left(1 /\left|\eta^{\prime} \cdot y^{\prime}\right|\right)\right]^{1+\beta}}{\left(\ln \left|A_{\lambda} \xi\right|\right)^{1+\beta}} \text { for }\left|A_{\lambda} \xi\right| \geq 2
$$

where $\eta^{\prime}=\frac{A_{\lambda} \xi}{\left|A_{\lambda} \xi\right|}$. Thus, by (1.3), we get

$$
\int_{S^{n-1}}\left|I_{\lambda}\left(\xi, \xi_{n+1}, y^{\prime}\right) \Omega\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) \leq C\left(\ln \left|A_{\lambda} \xi\right|\right)^{-(1+\beta)}
$$

Therefore,

$$
\begin{align*}
& \left|\widehat{\tau_{k, t}}\left(\xi, \xi_{n+1}\right)\right| \\
= & \left|2^{-t} \int_{D_{t-k}} e^{i\left(\xi \cdot y+\xi_{n+1} \phi(\rho(y))\right)} \frac{\Omega(y)}{\rho(y)^{\alpha-1}} d y\right| \\
= & \left|2^{-t} \int_{S^{n-1}} \int_{2^{t-k}}^{2^{t-k+1}} e^{i\left(\xi \cdot A_{\rho} y^{\prime}+\xi_{n+1} \phi(\rho)\right)} \Omega\left(y^{\prime}\right) J\left(y^{\prime}\right) d \rho d \sigma\left(y^{\prime}\right)\right|  \tag{3.5}\\
= & \left|2^{-k} \int_{S^{n-1}} \int_{1}^{2} e^{i\left(\xi \cdot A_{2^{t-k}} y^{\prime}+\xi_{n+1} \phi\left(2^{t-k} \rho\right)\right)} \Omega\left(y^{\prime}\right) J\left(y^{\prime}\right) d \rho d \sigma\left(y^{\prime}\right)\right| \\
\leq & C 2^{-k} \int_{S^{n-1}}\left|I_{2^{t-k}}\left(\xi, \xi_{n+1}, y^{\prime}\right)\right|\left|\Omega\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) \\
\leq & C 2^{-k}\left(\ln \left|A_{2^{t-k}} \xi\right|\right)^{-(1+\beta)} .
\end{align*}
$$

On the other hand, by (1.1), we can obtain

$$
\begin{align*}
& \left|\widehat{\tau_{k, t}}\left(\xi, \xi_{n+1}\right)\right|  \tag{3.6}\\
& =\left|2^{-t} \int_{D_{t-k}} e^{i\left(\xi \cdot y+\xi_{n+1} \phi(\rho(y))\right)} \frac{\Omega(y)}{\rho(y)^{\alpha-1}} d y\right| \\
& =\left|2^{-t} \int_{2^{t-k}}^{2^{t-k+1}} \int_{S^{n-1}} e^{i\left(\xi \cdot A_{\rho} y^{\prime}+\xi_{n+1} \phi(\rho)\right)} \Omega\left(y^{\prime}\right) J\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right) d \rho\right| \\
& =\left|2^{-t} \int_{2^{t-k}}^{2^{t-k+1}} \int_{S^{n-1}}\left(e^{i\left(\xi \cdot A_{\rho} y^{\prime}+\xi_{n+1} \phi(\rho)\right)}-e^{i \xi_{n+1} \phi(\rho)}\right) \Omega\left(y^{\prime}\right) J\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right) d \rho\right| \\
& \leq C 2^{-t} \int_{2^{t-k}}^{2^{t-k+1}} \int_{S^{n-1}}\left|e^{i\left(\xi \cdot A_{\rho} y^{\prime}+\xi_{n+1} \phi(\rho)\right)}-e^{i \xi_{n+1} \phi(\rho)}\right|\left|\Omega\left(y^{\prime}\right)\right|\left|J\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) d \rho \\
& \leq C 2^{-t} \int_{2^{t-k}}^{2^{t-k+1}} \int_{S^{n-1}}\left|\xi \cdot A_{\rho} y^{\prime}\right|\left|\Omega\left(y^{\prime}\right)\right|\left|J\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) d \rho \\
& \leq C 2^{-t} \int_{2^{t-k}}^{2^{t-k+1}} \int_{S^{n-1}}\left|A_{2^{t-k+1}} \xi \cdot y^{\prime}\right|\left|\Omega\left(y^{\prime}\right)\right|\left|J\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) d \rho \\
& \leq C 2^{-t} \cdot\left|A_{2^{t-k}} \xi\right| \int_{2^{t-k}}^{2^{t-k+1}} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left|J\left(y^{\prime}\right)\right|\left|\frac{A_{2^{t-k+1}} \xi}{\left|A_{2^{t-k+1}} \xi\right|} \cdot y^{\prime}\right| d \sigma\left(y^{\prime}\right) d \rho \\
& \leq C 2^{-k}\left|A_{2^{t-k}} \xi\right| \text {. }
\end{align*}
$$

Clearly, (3.5) and (3.6) imply (2.4) and (2.5) hold. Finally we shall show that (2.6) holds.

$$
\begin{aligned}
& \tau_{k}^{*}(f)(x) \\
= & \sup _{t \in \mathbb{R}}\left(\left|\tau_{k, t}\right| *|f|\right)(x) \\
= & \sup _{t \in \mathbb{R}} 2^{-t} \int_{D_{t-k}}|f(x-\Phi(y))| \frac{|\Omega(y)|}{\rho(y)^{\alpha-1}} d y \\
= & \sup _{t \in \mathbb{R}} 2^{-t} \int_{S^{n-1}} \int_{2^{t-k}}^{2^{t-k+1}}\left|f\left(x-\Phi\left(A_{\rho} y^{\prime}\right)\right)\right|\left|\Omega\left(y^{\prime}\right)\right| d \rho d \sigma\left(y^{\prime}\right) \\
= & \sup _{t \in \mathbb{R}} 2^{-k+1} 2^{-t} \int_{S^{n-1}} \int_{2^{t-1}}^{2^{t}}\left|f\left(x-\Phi\left(A_{2^{-k+1} \rho} y^{\prime}\right)\right)\right|\left|\Omega\left(y^{\prime}\right)\right| d \rho d \sigma\left(y^{\prime}\right) \\
\leq & 2^{-k+1} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right|\left(\sup _{t \in \mathbb{R}} 2^{-t} \int_{0}^{2^{t}}\left|f\left(x-\Phi\left(A_{2^{-k+1} \rho} y^{\prime}\right)\right)\right| d \rho\right) d \sigma\left(y^{\prime}\right) \\
\leq & C 2^{-k} \int_{S^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| M_{\Phi}(f)(x) d \sigma\left(y^{\prime}\right)
\end{aligned}
$$

By Lemma 2.2, we obtain $\left\|M_{\Phi}(f)\right\|_{p} \leq C\|f\|_{p}$, where $C>0$ is independent of $k$, the coefficient of $\phi(t)$ and $f$, since $\Omega$ is integrable on $S^{n-1}$, thus $\left\|\tau_{k}^{*}(f)\right\|_{p} \leq$ $C 2^{-k}\|f\|_{p}$. This shows (2.7) holds. This completes the proof of Theorem 1.

Acknowledgement. The authors would like to express their deep gratitude to the referee for his/her careful reading, valuable comments and suggestions.

## References

[1] A. Benedek, A. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. U.S.A. 48 (1962), 356-365.
[2] Y. Chen and Y. Ding, The parabolic Littlewood-Paley operator with Hardy space kernels, Canad. Math. Bull. 52 (2009), no. 4, 521-534.
[3] Y. Ding, D. Fan, and Y. Pan, $L^{p}$ boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 4, 593-600.
[4] Y. Ding and Y. Pan, $L^{p}$ bounds for Marcinkiewicz integrals, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 3, 669-677.
[5] E. Fabes and N. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38.

6] L. Grafakos and A. Stefanov, Convolution Calderón-Zygmund singular integral operators with rough kernel, Indiana Univ. Math. J. 47 (1998), 455-469.
[7] A. Nagel, N. Riviere, and S. Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395-403.
[8] E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
[9] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239-1295.
[10] Q. Xue, Y. Ding, and K. Yabuta, Parabolic Littlewood-Paley g-function with rough kernels, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 2049-2060.

Feixing Wang
School of Mathematics and Physics
University of Science and Technology Beijing
Beijing 100083, P. R. China
E-mail address: wfeixing@vip.sina.com
Yanping Chen
School of Mathematics and Physics
University of Science and Technology Beijing
Beijing 100083, P. R. China
E-mail address: yanpingch@126.com
Wei Yu
Department of Mathematics and Mechanics
Applied Science School
University of Science and Technology Beijing Beijing 100083, P. R. China
E-mail address: weiwei8437@163.com

