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A NOTE ON OSTROWSKI TYPE INEQUALITIES RELATED

TO SOME s-CONVEX FUNCTIONS IN THE SECOND SENSE

Zheng Liu

Abstract. Some errors in literatures are pointed out and corrected. A
generalization of Ostrowski type inequalities for functions whose deriva-
tives in absolute value are s-convex in the second sense is established.

Special cases are discussed.

1. Introduction

In [2], by using the Hölder inequality, Dragomir and Agarwal first proved
the following trapezoid type inequality.

Theorem 1. Suppose a, b ∈ I ⊆ R with a < b and f : I0 → R is differentiable

and let p > 1. If |f ′|
p

p−1 is convex on [a, b], then
(1)∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ b− a

2(p+ 1)
1
p

[
|f ′(a)|

p
p−1 + |f ′(b)|

p
p−1

2

] p−1
p

.

Remark 1. If we assume |f ′(x)| ≤ M for x ∈ [a, b] in Theorem 1, then (1) may
reduce to

(2)

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

2(p+ 1)
1
p

.

In [6], Pearce and Pečarić using the Hölder inequality in a different way, but
did not use the power-mean inequality as stated in the proof of Theorem 1 of
[6], provided an improvement of the above result as follows.

Theorem 2. Suppose a, b ∈ I ⊆ R with a < b and f : I0 → R is differentiable.
If the function |f ′|q (q ≥ 1) is convex on [a, b], then

(3)

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ b− a

4

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q
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and

(4)

∣∣∣∣∣f(a+ b

2
)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ b− a

4

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.

Remark 2. If we assume |f ′(x)| ≤ M for x ∈ [a, b] in Theorem 2, then (3) and
(4) may reduce to

(5)

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

4

and

(6)

∣∣∣∣∣f(a+ b

2
)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

4
.

We recall that Hudzik and Maligranda in [4] has defined a function f :
[0,∞) → R is said to be s-convex in the second sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. The class of
s-convex functions in the second sense is usually denoted with K2

s . It can be
easily seen that for s = 1, s-convexity reduces to ordinary convexity of functions
defined on [0,∞). It is proved in [4] that all functions from K2

s , s ∈ (0, 1) are
nonnegative. Naturally, we may say a function f : [0,∞) → R is s-concave in
the second sense for some fixed s ∈ (0, 1] if −f ∈ K2

s . Thus we can conclude
that s-concave function is always nonpositive for any s ∈ (0, 1).

In a recent paper [1], Alomari et al. used Hölder inequality to obtain the
following Ostrowski type inequalities for functions whose derivatives in absolute
value are s-convex in the second sense.

Theorem 3. Let f : I ⊂ [0,∞) → R be a differentiable mapping on I◦ such
that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′|q is s-convex in the second
sense on [a, b] for some fixed s ∈ (0, 1], p, q > 1, 1

p + 1
q = 1 and |f ′(x)| ≤ M ,

x ∈ [a, b], then the following inequality holds:

(7)

∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M

(1 + p)
1
p

(
2

s+ 1

) 1
q
[
(x− a)2 + (b− x)2

b− a

]
for each x ∈ [a, b].

In the same paper [1], by using Hölder inequality in a different way, but did
not use the power-mean inequality as stated in the proof of Theorem 4 of [1],
the authors obtained another Ostrowski type inequalities for functions whose
derivatives in absolute value are s-convex in the second sense as follows.

Theorem 4. Let f : I ⊂ [0,∞) → R be a differentiable mapping on I◦ such
that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′|q is s-convex in the second
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sense on [a, b] for some fixed s ∈ (0, 1] and q ≥ 1, and |f ′(x)| ≤ M , x ∈ [a, b],
then the following inequality holds:

(8)

∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M

(
2

s+ 1

) 1
q
[
(x− a)2 + (b− x)2

2(b− a)

]
for each x ∈ [a, b].

It is clear that the inequality (8) is better than the inequality (7) since

(1 + p)
1
p < 2 for any p > 1. However, this does not mean the approach via

the power mean inequality is a better approach than that through Hölder’s
inequality as stated in Remark 1 of [1], since the power-mean inequality has
not been used in proving the inequality (8). It is just incorrectly relay an
erroneous message from [6] as mentioned above. Moreover, it should be noticed
that Theorem 5 in [1] and Theorem 4 in [5] are not valid since a nonnegative
|f ′|q could not be a s-concave function for any fixed s ∈ (0, 1).

In this work, we will also use Hölder inequality in two different ways to pro-
vide generalizations of Ostrowski type inequalities for functions whose deriva-
tives in absolute value are s-convex in the second sense. Some special cases with
applications of the averaged midpoint-trapezoid inequalities in special means
are discussed.

2. Main results

In order to prove our main theorems, we need the following lemma:

Lemma 1. Let f : I ⊂ R → R be a differentiable mapping on I◦ where a, b ∈ I
with a < b. If f ′ ∈ L([a, b]), then for any λ ∈ [0, 1] and x ∈ [a, b] the following
equality holds:

(9)

(1− λ)f(x) + λ
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

=
(x− a)2

b− a

∫ 1

0

(
t− λ

2

b− a

x− a

)
f ′(tx+ (1− t)a) dt

− (b− x)2

b− a

∫ 1

0

(
t− λ

2

b− a

b− x

)
f ′(tx+ (1− t)b) dt.

Proof. From [3] we see that
(10)

(1− λ)f(x) + λ
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

=
1

b− a

{∫ x

a

[
t− (a+ λ

b− a

2
)

]
f ′(t) dt+

∫ b

x

[
t− (b− λ

b− a

2
)

]
f ′(t) dt

}
.

By changing the variable t of the first integral to a+ (x− a)t and the variable
t of the second integral to b− (b− x)t in (10), we get (9) at once. □
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Theorem 5. Let the assumptions of Theorem 3 hold. Then for all λ ∈ [0, 1]
and x ∈ [a+ λ b−a

2 , b− λ b−a
2 ], the following inequality holds:∣∣∣∣∣(1− λ)f(x) + λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣(11)

≤ M

b− a
(

1

p+ 1
)

1
p (

2

s+ 1
)

1
q

{
(x− a)2

[
(
λ

2

b− a

x− a
)p+1 + (1− λ

2

b− a

x− a
)p+1

] 1
p

+(b− x)2
[
(
λ

2

b− a

b− x
)p+1 + (1− λ

2

b− a

b− x
)p+1

] 1
p

}
.

Proof. By Lemma 1 and notice x ∈ [a + λ b−a
2 , b − λ b−a

2 ] implies that 0 ≤
λ
2

b−a
x−a ≤ 1 and 0 ≤ λ

2
b−a
b−x ≤ 1, using the Hölder inequality, we have∣∣∣∣∣(1− λ)f(x) + λ
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣
≤ (x− a)2

b− a

∫ 1

0

|t− λ

2

b− a

x− a
||f ′(tx+ (1− t)a)| dt

+
(b− x)2

b− a

∫ 1

0

|t− λ

2

b− a

b− x
||f ′(tx+ (1− t)b)| dt

≤ (x− a)2

b− a

(∫ 1

0

|t− λ

2

b− a

x− a
|p dt

) 1
p
(∫ 1

0

|f ′(tx+ (1− t)a)|q dt
) 1

q

+
(b− x)2

b− a

(∫ 1

0

|t− λ

2

b− a

b− x
|p dt

) 1
p
(∫ 1

0

|f ′(tx+ (1− t)b)|q dt
) 1

q

≤ (x− a)2

b− a

(
1

p+ 1

) 1
p
(

1

s+ 1

) 1
q
[
(
λ

2

b− a

x− a
)p+1 + (1− λ

2

b− a

x− a
)p+1

] 1
p

× [|f ′(x)|q + |f ′(a)|q]
1
q

+
(b− x)2

b− a

(
1

p+ 1

) 1
p
(

1

s+ 1

) 1
q
[
(
λ

2

b− a

b− x
)p+1 + (1− λ

2

b− a

b− x
)p+1

] 1
p

× [|f ′(x)|q + |f ′(b)|q]
1
q

≤ M(x− a)2

b− a

(
1

p+ 1

) 1
p
(

2

s+ 1

) 1
q
[
(
λ

2

b− a

x− a
)p+1 + (1− λ

2

b− a

x− a
)p+1

] 1
p

+
M(b− x)2

b− a

(
1

p+ 1

) 1
p
(

2

s+ 1

) 1
q
[
(
λ

2

b− a

b− x
)p+1 + (1− λ

2

b− a

b− x
)p+1

] 1
p

=
M

b− a

(
1

p+ 1

) 1
p
(

2

s+ 1

) 1
q

{
(x− a)2

[
(
λ

2

b− a

x− a
)p+1 + (1− λ

2

b− a

x− a
)p+1

] 1
p
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+(b− x)2
[
(
λ

2

b− a

b− x
)p+1 + (1− λ

2

b− a

b− x
)p+1

] 1
p

}
,

since

∫ 1

0

|t− λ

2

b− a

x− a
|p dt =

∫ λ
2

b−a
x−a

0

(
λ

2

b− a

x− a
− t)p dt+

∫ 1

λ
2

b−a
x−a

(t− λ

2

b− a

x− a
)p dt

(12)

=
1

p+ 1

[
(
λ

2

b− a

x− a
)p+1 + (1− λ

2

b− a

x− a
)p+1

]
,

∫ 1

0

|t− λ

2

b− a

b− x
|p dt =

∫ λ
2

b−a
b−x

0

(
λ

2

b− a

b− x
− t)p dt+

∫ 1

λ
2

b−a
b−x

(t− λ

2

b− a

b− x
)p dt

(13)

=
1

p+ 1

[
(
λ

2

b− a

b− x
)p+1 + (1− λ

2

b− a

b− x
)p+1

]
,∫ 1

0

|f ′(tx+ (1− t)a)|q dt ≤
∫ 1

0

[ts|f ′(x)|q + (1− t)s|f ′(a)|q] dt

=
|f ′(x)|q + |f ′(a)|q

s+ 1
≤ 2Mq

s+ 1

and ∫ 1

0

|f ′(tx+ (1− t)b)|q dt ≤
∫ 1

0

[ts|f ′(x)|q + (1− t)s|f ′(b)|q] dt

=
|f ′(x)|q + |f ′(b)|q

s+ 1
≤ 2Mq

s+ 1
.

The proof is thus completed. □

Corollary 1. Let the assumptions of Theorem 3 hold. Then for any λ ∈ [0, 1]
we have

(14)

∣∣∣∣∣(1− λ)f(
a+ b

2
) + λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣
≤

[
λp+1 + (1− λ)p+1

p+ 1

] 1
p
(

2

s+ 1

) 1
q M(b− a)

2
.

Proof. We set x = a+b
2 in (11) to get (14). □

Remark 3. If we take λ = 0 and λ = 1 in (14), we get a midpoint type inequality∣∣∣∣∣f(a+ b

2
)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

2(1 + p)
1
p

(
2

s+ 1

) 1
q
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and a trapezoid type inequality∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

2(1 + p)
1
p

(
2

s+ 1

) 1
q

which recapture (2) for s = 1.
If we take λ = 1

3 in (14), we get a Simpson type inequality∣∣∣∣∣16
[
f(a) + 4f(

a+ b

2
) + f(b)

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣
≤ M(b− a)

2

(
1 + 2p+1

3p+1(p+ 1)

) 1
p
(

2

s+ 1

) 1
q

,

and if we take θ = 1
2 in (14), we get an averaged midpoint-trapezoid type

inequality as
(15)∣∣∣∣∣14

[
f(a) + 2f(

a+ b

2
) + f(b)

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

4(1 + p)
1
p

(
2

s+ 1

) 1
q

.

Remark 4. If we take λ = 0 in (11), we recapture the inequality (7) and
thus Theorem 5 may be regarded as a generalization of Theorem 3, and, it is
interesting to notice that the smallest bound for (11) is obtained at x = a+b

2

and λ = 1
2 . Thus the averaged midpoint-trapezoid inequality (15) is optimal

in the current situation.

Theorem 6. Let the assumptions of Theorem 4 hold. Then for all λ ∈ [0, 1]
and x ∈ [a+ λ b−a

2 , b− λ b−a
2 ], the following inequality holds:∣∣∣∣∣(1− λ)f(x) + λ
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣(16)

≤ 2
2
q−1M

[(s+ 1)(s+ 2)]
1
q

{
(x− a)2

b− a

[
(
λ

2

b− a

x− a
)2 + (1− λ

2

b− a

x− a
)2
]1− 1

q

×
[
(
λ

2

b− a

x− a
)s+2 + (1− λ

2

b− a

x− a
)s+2 +

s

2

] 1
q

+
(b− x)2

b− a

[
(
λ

2

b− a

b− x
)2 + (1− λ

2

b− a

b− x
)2
]1− 1

q

×
[
(
λ

2

b− a

b− x
)s+2 + (1− λ

2

b− a

b− x
)s+2 +

s

2

] 1
q

}
.

Proof. Using Lemma 1 and the Hölder inequality, we have∣∣∣∣∣(1− λ)f(x) + λ
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣
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≤ (x− a)2

b− a

∫ 1

0

|t− λ

2

b− a

x− a
||f ′(tx+ (1− t)a)| dt

+
(b− x)2

b− a

∫ 1

0

|t− λ

2

b− a

b− x
||f ′(tx+ (1− t)b)| dt

=
(x− a)2

b− a

∫ 1

0

|t− λ

2

b− a

x− a
|1−

1
q |t− λ

2

b− a

x− a
|
1
q |f ′(tx+ (1− t)a)| dt

+
(b− x)2

b− a

∫ 1

0

|t− λ

2

b− a

b− x
|1−

1
q |t− λ

2

b− a

b− x
|
1
q |f ′(tx+ (1− t)b)| dt

≤ (x− a)2

b− a

(∫ 1

0

|t− λ

2

b− a

x− a
| dt

)1− 1
q

×
(∫ 1

0

|t− λ

2

b− a

x− a
||f ′(tx+ (1− t)a)|q dt

) 1
q

+
(b− x)2

b− a

(∫ 1

0

|t− λ

2

b− a

b− x
| dt

)1− 1
q

×
(∫ 1

0

|t− λ

2

b− a

b− x
||f ′(tx+ (1− t)b)|q dt

) 1
q

≤ 2
2
q−1M

[(s+ 1)(s+ 2)]
1
q

{
(x− a)2

b− a

[
(
λ

2

b− a

x− a
)2 + (1− λ

2

b− a

x− a
)2
]1− 1

q

×
[
(
λ

2

b− a

x− a
)s+2 + (1− λ

2

b− a

x− a
)s+2 +

s

2

] 1
q

+
(b− x)2

b− a

[
(
λ

2

b− a

b− x
)2 + (1− λ

2

b− a

b− x
)2
]1− 1

q

[
(
λ

2

b− a

b− x
)s+2 + (1− λ

2

b− a

b− x
)s+2 +

s

2
]
1
q

}
,

since ∫ 1

0

|t− λ

2

b− a

x− a
| dt = 1

2

[
(
λ

2

b− a

x− a
)2 + (1− λ

2

b− a

x− a
)2
]

in case p = 1 of (12) and∫ 1

0

|t− λ

2

b− a

x− a
| dt = 1

2

[
(
λ

2

b− a

x− a
)2 + (1− λ

2

b− a

x− a
)2
]

in case p = 1 of (13),∫ 1

0

|t− λ

2

b− a

x− a
||f ′(tx+ (1− t)a)|q dt

=

∫ λ
2

b−a
x−a

0

(
λ

2

b− a

x− a
− t)|f ′(tx+ (1− t)a)|q dt
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+

∫ 1

λ
2

b−a
x−a

(t− λ

2

b− a

x− a
)|f ′(tx+ (1− t)a)|q dt]

≤
∫ λ

2
b−a
x−a

0

(
λ

2

b− a

x− a
− t)[ts|f ′(x)|q + (1− t)s|f ′(a)|q] dt

+

∫ 1

λ
2

b−a
x−a

(t− λ

2

b− a

x− a
)[ts|f ′(x)|q + (1− t)s|f ′(a)|q] dt]

=

[
1

s+ 2
− λ

2

b− a

x− a

1

s+ 1
+

2

(s+ 1)(s+ 2)
(
λ

2

b− a

x− a
)s+2

]
|f ′(x)|q

+

[
1

s+ 2
− (1− λ

2

b− a

x− a
)

1

s+ 1
+

2

(s+ 1)(s+ 2)
(1− λ

2

b− a

x− a
)s+2

]
|f ′(a)|q

≤ 2Mq

(s+ 1)(s+ 2)

[
(
λ

2

b− a

x− a
)s+2 + (1− λ

2

b− a

x− a
)s+2 +

s

2

]
and ∫ 1

0

|t− λ

2

b− a

b− x
||f ′(tx+ (1− t)b)|q dt

=

∫ λ
2

b−a
b−x

0

(
λ

2

b− a

b− x
− t)|f ′(tx+ (1− t)b)|q dt

+

∫ 1

λ
2

b−a
b−x

(t− λ

2

b− a

b− x
)|f ′(tx+ (1− t)b)|q dt]

≤
∫ λ

2
b−a
b−x

0

(
λ

2

b− a

b− x
− t)[ts|f ′(x)|q + (1− t)s|f ′(b)|q] dt

+

∫ 1

λ
2

b−a
b−x

(t− λ

2

b− a

b− x
)[ts|f ′(x)|q + (1− t)s|f ′(b)|q] dt]

=

[
1

s+ 2
− λ

2

b− a

b− x

1

s+ 1
+

2

(s+ 1)(s+ 2)
(
λ

2

b− a

b− x
)s+2

]
|f ′(x)|q

+

[
1

s+ 2
− (1− λ

2

b− a

b− x
)

1

s+ 1
+

2

(s+ 1)(s+ 2)
(1− λ

2

b− a

b− x
)s+2

]
|f ′(b)|q

≤ 2Mq

(s+ 1)(s+ 2)

[
(
λ

2

b− a

b− x
)s+2 + (1− λ

2

b− a

b− x
)s+2 +

s

2

]
.

The proof is thus completed. □

Corollary 2. Let the assumptions of Theorem 4 hold. Then for any λ ∈ [0, 1]
we have ∣∣∣∣∣(1− λ)f(

a+ b

2
) + λ

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣(17)
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≤
[
λ2 + (1− λ)2

2

]1− 1
q
[
s+ 2λs+2 + 2(1− λ)s+2

(s+ 1)(s+ 2)

] 1
q M(b− a)

2
.

Proof. We set x = a+b
2 in (16) to get (17). □

Remark 5. If we take λ = 0 and λ = 1 in (17), we get a midpoint type inequality∣∣∣∣∣f(a+ b

2
)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

4

(
2

s+ 1

) 1
q

and a trapezoid type inequality∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M(b− a)

4

(
2

s+ 1

) 1
q

,

which recapture (5) and (6) for s = 1, respectively.
If we take λ = 1

3 in (17), we get a Simpson type inequality∣∣∣∣∣16
[
f(a) + 4f(

a+ b

2
) + f(b)

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣
≤ 5M(b− a)

36

[
18(2 + 2s+3 + 3s+2)

5(s+ 1)(s+ 2)3s+2

] 1
q

,

and if we take θ = 1
2 in (17), we get an averaged midpoint-trapezoid type

inequality as

(18)

∣∣∣∣∣14
[
f(a) + 2f(

a+ b

2
) + f(b)

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣
≤ M(b− a)

8

[
1 + 2ss

(s+ 1)(s+ 2)2s−2

] 1
q

.

Remark 6. If we take λ = 0 in (16), we recapture the inequality (8) and
thus Theorem 6 may be regarded as a generalization of Theorem 4, and, it is
interesting to notice that the smallest bound for (16) is obtained at x = a+b

2

and λ = 1
2 . Thus the averaged midpoint-trapezoid inequality (18) is optimal

in the current situation.

Remark 7. It should be noticed that the inequality (18) is better than the
inequality (15). In fact, it is not difficult to find that 2 − s − 21−s ≥ 0 for

s ∈ (0, 1] by differentiation, and then we can deduce that 1+2ss
(s+1)(s+2)2s−2 ≤ 2

s+1

for s ∈ (0, 1] by elementary algebra.

3. Applications to special means

We now consider the applications of the averaged midpoint-trapezoid in-
equalities (15) and (18) to the following special means:
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(1) The arithmetic mean:

A = A(a, b) :=
a+ b

2
, a, b ≥ 0.

(2) The p-logarithmic mean:

Lp = Lp(a, b) =

[
bp+1 − ap+1

(p+ 1)(b− a)

] 1
p

, a ̸= b, a, b > 0.

From known Example 1 in [4], we may find that for any s ∈ (0, 1) and β > 0,
f : [0,∞) → [0,∞), f(t) = βts, f ∈ K2

s .
Using the averaged midpoint-trapezoid type inequalities (15) and (18), some

new inequalities are derived for the above means.

Proposition 1. Let 0 < a < b, p, q > 1, 1
p + 1

q = 1 and s ∈ (0, 1
q ). Then we

have∣∣∣∣12A(as+1, bs+1) +
1

2
As+1(a, b)− Ls+1

s+1(a, b)

∣∣∣∣ ≤ (b− a)bs

2

(
s+ 1

2p+ 2

) 1
p

.

Proof. The assertion follows from applied the inequality (15) to the function
f(t) = ts+1, t ∈ [a, b] and s ∈ (0, 1

q ), which implies that f ′(t) = (s + 1)ts,

t ∈ [a, b] and |f ′(t)|q = (s+1)qtqs, t ∈ [a, b] is a s-convex function in the second
sense since qs ∈ (0, 1) and (s+ 1)q > 0, and we may take M = (s+ 1)bs. □

Proposition 2. Let 0 < a < b, q ≥ 1 and s ∈ (0, 1
q ). Then we have∣∣∣∣12A(as+1, bs+1) +

1

2
As+1(a, b)− Ls+1

s+1(a, b)

∣∣∣∣
≤ (b− a)bs(s+ 1)1−

1
q

8

(
1 + 2ss

(s+ 2)2s−2

) 1
q

.

Proof. The assertion follows from applied the inequality (18) to the function
f(t) = ts+1, t ∈ [a, b] and s ∈ (0, 1

q ), which implies that f ′(t) = (s + 1)ts,

t ∈ [a, b] and |f ′(t)|q = (s+1)qtqs, t ∈ [a, b] is a s-convex function in the second
sense since qs ∈ (0, 1) and (s+ 1)q > 0, and we may take M = (s+ 1)bs. □
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