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A NOTE ON OSTROWSKI TYPE INEQUALITIES RELATED
TO SOME s-CONVEX FUNCTIONS IN THE SECOND SENSE

ZHENG LiIUu

ABSTRACT. Some errors in literatures are pointed out and corrected. A
generalization of Ostrowski type inequalities for functions whose deriva-
tives in absolute value are s-convex in the second sense is established.
Special cases are discussed.

1. Introduction

In [2], by using the Holder inequality, Dragomir and Agarwal first proved
the following trapezoid type inequality.

Theorem 1. Suppose a,b € I CR with a <b and f: I° — R is differentiable
and let p > 1. If |f'|7=T s convex on [a,b], then

(1) .
fla) £ J( b—a_[If@[ 41O | 7
2 _“/1f 2(p+1)» [ 2

Remark 1. If we assume |f'(x)| < M for = € [a,b] in Theorem 1, then (1) may
reduce to

(2)

b I M(b—
OO L[ g < MOZ0)
2 b=a 2(p+1)7
In [6], Pearce and Pecari¢ using the Holder inequality in a different way, but

did not use the power-mean inequality as stated in the proof of Theorem 1 of
[6], provided an improvement of the above result as follows.

Theorem 2. Suppose a,b € I CR witha < b and f : I — R is differentiable.
If the function |f'|? (¢ > 1) is convez on [a b], then

fa) + f(b) [/ (@] + [ f(0)]*
2 —a/f b dt [ 2

3)
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and

(4)

<
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b—a {If’(a)lu £/ (B)]e]
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Remark 2. If we assume |f'(z)] < M for x € [a,b] in Theorem 2, then (3) and
(4) may reduce to

a b _a
6 M2 SO [ rwa] < M2
and

a b —a
© ‘f( - [ rwar] < M2,

We recall that Hudzik and Maligranda in [4] has defined a function f :
[0,00) — R is said to be s-convex in the second sense if

fOz+ (1 =Ny) <X f(2) + (1= 1)f(y)

holds for all z,y € [0,00), A € [0, 1] and for some fixed s € (0,1]. The class of
s-convex functions in the second sense is usually denoted with K2. It can be
easily seen that for s = 1, s-convexity reduces to ordinary convexity of functions
defined on [0, 00). It is proved in [4] that all functions from K2, s € (0,1) are
nonnegative. Naturally, we may say a function f : [0,00) — R is s-concave in
the second sense for some fixed s € (0,1] if —f € K2. Thus we can conclude
that s-concave function is always nonpositive for any s € (0, 1).

In a recent paper [1], Alomari et al. used Holder inequality to obtain the
following Ostrowski type inequalities for functions whose derivatives in absolute
value are s-convex in the second sense.

Theorem 3. Let f : I C [0,00) = R be a differentiable mapping on I° such
that f' € Lla,b], where a,b € I with a < b. If |f'|7 is s-convex in the second
sense on [a,b] for some fired s € (0,1], p,q > 1,%—}—% =1 and |f'(z)] < M,
x € [a,b], then the following inequality holds:

bia/abf(t)dt < M ( 2 )3[<x—a>2+<b—x>2

1—|—p)% s+1 b—a
for each x € [a,b].

(1) |f(2) -

In the same paper [1], by using Holder inequality in a different way, but did
not use the power-mean inequality as stated in the proof of Theorem 4 of [1],
the authors obtained another Ostrowski type inequalities for functions whose
derivatives in absolute value are s-convex in the second sense as follows.

Theorem 4. Let f: I C [0,00) — R be a differentiable mapping on I° such
that f' € Lla,b], where a,b € I with a < b. If |f'|? is s-convex in the second
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sense on [a,b] for some fixred s € (0,1] and ¢ > 1, and |f'(x)] < M, x € [a,b],
then the following inequality holds:

<M< P >é [(x—a)2+(b—x)2

) s+1 2(b—a)

b
f@) - [ s

for each x € [a,b].

It is clear that the inequality (8) is better than the inequality (7) since
(14 p)% < 2 for any p > 1. However, this does not mean the approach via
the power mean inequality is a better approach than that through Holder’s
inequality as stated in Remark 1 of [1], since the power-mean inequality has
not been used in proving the inequality (8). It is just incorrectly relay an
erroneous message from [6] as mentioned above. Moreover, it should be noticed
that Theorem 5 in [1] and Theorem 4 in [5] are not valid since a nonnegative
|f/19 could not be a s-concave function for any fixed s € (0,1).

In this work, we will also use Holder inequality in two different ways to pro-
vide generalizations of Ostrowski type inequalities for functions whose deriva-
tives in absolute value are s-convex in the second sense. Some special cases with
applications of the averaged midpoint-trapezoid inequalities in special means
are discussed.

2. Main results
In order to prove our main theorems, we need the following lemma:

Lemma 1. Let f : I C R — R be a differentiable mapping on I° where a,b € 1
with a < b. If f" € L([a,b]), then for any X € [0,1] and x € [a,b] the following
equality holds:

b
(1= 0 1) + 1[I0 e R

2
9) :(i_?/o (t—’z\z_Z)f’(ter(l—t)a)dt
- (bb_”;)/o (t - ;H) £tz + (1= t)b) dt.
Proof. From [3] we see that
(10)
b
(1= Wf) + A LOEIO bia/ F(t) dt

e {/ [’*““b;a)} f’<t>dt+/: {t—w—Ab;a)} f'(t)dt}.

By changing the variable ¢ of the first integral to @ 4+ (x — a)t and the variable
t of the second integral to b — (b — x)t in (10), we get (9) at once. O
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Theorem 5. Let the assumptions of Theorem 3 hold. Then for all A € [0,1]
and x € [a + )\b b —A\bsa 521, the following inequality holds:

1) |1 = nf)+ 21D bia/bf(t)dt

2

= ﬁ{@c—a)g e e i

“b—a'p+1 s+1 2x—a 2x—a

Ho—a)? [(Gr=tprt - Z 00|
2b—x 2b—2

Proof. By Lemma 1 and notice z € [a + /\b*Ta,b - /\b*Ta] implies that 0 <

22=4 < 1and 0 < 5222 <1, using the Holder inequality, we have

b
(1_A)f(x)+xf(“);f(b) s [ rw

< =af / =220+ (- ) a

b—a

b—x /|777||f( + (L —t)b)|dt
;z—_if </;t )
2 ([ -iir)’ ([ oo

(m—a)2 1 \7 Ab—a Ab—a +1%
~AZ7° 1_22"%p
b—a p—|—1 s+1 <2x—a) * 2x—a)

 [If @) + 1 (a)]]

b—2)?( 1 \7[ 1 Ab—a Ab—a .7
_ 1—-Z= pt
+ b—a \p+1 s+1 _(2bf:c) + 2bfx)

x|/ (@) + | £ (b)) 7

Ma-a?/ 1 \?( 2 \i[ Ab—a Ab—a. .7
< 27 Typtl _ 27 Typtl
- b—-a (p—|—1> (s+1) _(2x—a) +{ 2x—a) }
M@b-z)? [ 1 2 \i[Ab—a, ., Ab—a, . ,]"
fed 122 _2yptl
* b—a (p—i—l) (S+1> [(Qb—m) * 2b—x)

M (1 NT/ 2 N [ Ab—a . Ab—a,,]”
_b—a<p+1) <s—|—1> {(;v @) [(Qx—a) +a 2x—a)

Sl
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Ab—a Ab—a »
+(b—2x)? p+1 p+1
(b—2) {(be) (1 Qbfx) } }’

since

(12)

/

Ab—a
27=a ANb—a 1 Ab—a
= — —t)Pdt t—— P dt
/0 (2x—a ) +/Ab;a( 2x—a)

2 x—a
1 Ab—a Ab—a
—_ - (= p+1 1_77P+1
p—i—l{(Qx—a) o 2x—a) }’

Ab—a
2=c \b—a ! Ab—a
= = —t)Pdt t— = Pt
/0 (2b—:£ ) +/§ZZ( 2b—17)

1 Ab—a Ab—a
— _—  [(ZZ_Zypt+l _ A7 \pt+l
p—i—l{(Qb—aj) +a 2b—a:) }7

/ (b + (1 — t)a)|dt < / [ 1/ (@)]7 + (1 — 07|/ (a)]] dt
0 0
@@l 2

/ |

s+1 ~s+1
and
1 1
[ 1rta s q-oprar< [ @1f@r -0l o)d
0 0
_ @+ 1o 2M1
s+1 s+ 1
The proof is thus completed. ]

Corollary 1. Let the assumptions of Theorem 3 hold. Then for any X € [0,1]
we have

b
R = L

2 2
(14) ) )

[N 2 \T M(b—a)

- p+1 s+1 2 '
Proof. We set z = % in (11) to get (14). O

Remark 3. If we take A = 0 and A = 1 in (14), we get a midpoint type inequality

’f(aer —a/f
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and a trapezoid type inequality

LCERICI Ny

2

s ()
1+p)% s+1
which recapture (2 ) for s=1.

If we take \ = g n (14), we get a Simpson type inequality

1
6

_M@p-a) (1427 P2 \T
- 2 3rtl(p+1) s+1) 7

and if we take § = % in (14), we get an averaged midpoint-trapezoid type

inequality as
M(b — a) < 2 >
4(1 +p)r \s+1

(15)
1 a —|— b
Fraver i o) - o [
Remark 4. If we take A = 0 in (11), we recapture the inequality (7) and
thus Theorem 5 may be regarded as a generalization of Theorem 3, and, it is
interesting to notice that the smallest bound for (11) is obtained at z = ‘%rb
and A = 2. Thus the averaged midpoint-trapezoid inequality (15) is optimal
in the current situation.

[f()+4f(a+b)+f } /f 1) dt

Q=

Theorem 6. Let the assumptions of Theorem 4 hold. Then for all A € [0,1]
and x € [a+ )\b b —\b=a 2541, the following inequality holds:

(16) (1>\)f(x)+)\f(a);f(b)bia/abf(t)dt
25 1M (@—a?[Ab—a, . Ab—a,]'"7
- [(s+1)(s+2)]é{ b—a [(2x—a) + 2w—a)]

(b= [Ab—a, . Ab—a,]'""
+ b—a (2bfac) ( Qbfx)

Ab=a i o Ab—a ., st
X{(Qb—x) oo s

Proof. Using Lemma 1 and the Holder inequality, we have

b
(1= Nf) + AL —bia/ F(t) dt
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(= —a) /|~ 1 (ke + (1= t)a) de

(b + (1~ D) di
(z — ) /|—f— %t-g;_3|%|ff<m+<1-t>a>|dt
Nb )/Ot e 2V a4 (- )] dt

1
q

1
q

(z—a)* (/ - )\b ) 1-3
(/o| Y /(tx+(1t)a)|th)

e (/1 bzt
( (tz + (1= 1)b)|? dt)

[(s+1)(s +2)]7

1
RN LEC |

b—a 2z —a 2x—a

23_1M {(za)? {(/\ba)2+(1Ab“)zr_3

2$—a 2.1'—0,

b—a 21)733) ( _§b—x

+(b—x)2 [()\b—a 2.0 )\b_a)2:|1_(11

¢

b_as+2 )\b—a,s+2 S.1
o) TUT )T el

1 Ab—a 1[Ab—a., \bea
PN = — _ 12 9
/‘t 20—a® 2{(2:6_@) +( “_a)}

in case p = 1 of ( 12) and

:% {(Ab_a)ﬂ—(l—)‘b_aﬂ

2z—a 2x—a

[

in case p =1 of (13),

Ab
A

a
2 z—a

(f

"(tx + (1 — t)a)|? dt

Ab—a

37— DI te+ (-t
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! —a
R I CRRIE DI

< [T G @+ (-l

[ = 5= @ - ol @l e

1 Ab—a 1 2 Ab—a s12

+2 2”_a5+1+(8+1)(5+2)(2m—a) }|f(x)|
{1 Ab—a, 1 2 Ab—

+

-(- 2$—a)8+1+(8+1>(8+2)(1
2M1 Ab—a 4., Ab si2 S
S(s—i—l)(s—l—2) {( )+ - 2:10—a)Jr +2]

el

27—a

2x—a

/ 0= S 021+ (1~ o))t

w~

A
2

- /o l(;z:a | f (tx + (1 —)b)|? dt

o-

L R T R DI

< /0 - I(%z — O[] ()] + (1 — )°| £ (b)|9] dt

L R T ERIERIZCIURT

1 Ab—a 1 2 Ab—a,, ,
N [S-I—Q_2b—x8+l+(s+1)(s+2)(2b_$) +2:| |f ()|
1 Ab—a., 1 2 Ab—a.,
[8+2_(1_2ba:)s+1+(s+1)(s+2)<1_2bx)+2} |£(0)]
2M1 Ab—a .y Ab—a o s
SCENCE) [(zb_x“ - +2]

The proof is thus completed. (I

Corollary 2. Let the assumptions of Theorem 4 hold. Then for any X € [0,1]
we have

b
I Rl V(UL

2
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< [ o [REac] 2)A>S+T Mo —a

Proof. We set x = “E in (16) to get (17). O

Remark 5. If we take A = 0and A = 1in (17), we get a midpoint type inequality

o (2

M(b—a)( 2 )3
< )
- 4 s+1

which recapture (5) and (6) for s = 1, respectively.
If we take A\ = % in (17), we get a Simpson type inequality

a+b 1 b
: >—m/a f(t)dt

and a trapezoid type inequality

b
Pl [

I

s arc o) - o [row

_ 5M(b—a) [18(2+2°+ + 342)]
- 36 5(s+1)(s+2)35+2 | ~’
and if we take § = % in (17), we get an averaged midpoint-trapezoid type

inequality as

b
1@ o) - 5= [ o

(18) .

M(b—a) 1425 .
8 {(H (s + 2)252}

Remark 6. If we take A = 0 in (16), we recapture the inequality (8) and
thus Theorem 6 may be regarded as a generalization of Theorem 4, and, it is

interesting to notice that the smallest bound for (16) is obtained at « = ‘%b

and \ = % Thus the averaged midpoint-trapezoid inequality (18) is optimal
in the current situation.

<

Remark 7. It should be noticed that the inequality (18) is better than the
inequality (15). In fact, it is not difficult to find that 2 — s — 2175 > 0 for
s € (0,1] by differentiation, and then we can deduce that L+2%s 2

(s+1)(s+2)25—2 = s+1
for s € (0, 1] by elementary algebra.

3. Applications to special means

We now consider the applications of the averaged midpoint-trapezoid in-
equalities (15) and (18) to the following special means:
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(1) The arithmetic mean:

b
A= A(a,b) := a—2|— , a,b>0.
(2) The p-logarithmic mean:
prtl — gp Tt

L, =Ly(a,b) = [(p—&—l)(b—a)} , a#£b, a,b>0.

From known Example 1 in [4], we may find that for any s € (0,1) and 8 > 0,
f:00,00) = [0,00), f(t) = Bt*, f € K2.

Using the averaged midpoint-trapezoid type inequalities (15) and (18), some
new inequalities are derived for the above means.

Proposition 1. Let 0 < a < b, p,q > 1, % + % =1 and s € (0, %) Then we

have

1
1 1 (b—a)h® [ s+1\*¥
ZA s+1 bs+1 7AS+1 b _Ls+1 nl < )
A0 + 547 (0 h) = L (b)) < 75 2+ 2

Proof. The assertion follows from applied the inequality (15) to the function
f(t) =Tt t € [a,b] and s € (0,%), which implies that f'(t) = (s + 1)t*,
t € la,b) and |f/(t)|?7 = (s+1)9t%, t € [a,]] is a s-convex function in the second
sense since ¢s € (0,1) and (s + 1)? > 0, and we may take M = (s + 1)b°. O

Proposition 2. Let 0 <a < b,q > 1 and s € (0, %) Then we have

1 1

2A(as+17 bt + 5AS“(a, b) — Lt (a, b)’
b+ 1)' T (142 @
- 8 (s+2)25-2 )

Proof. The assertion follows from applied the inequality (18) to the function
f@t) =ttt € [a,b] and s € (0, ), which implies that f'(t) = (s + 1)t*,
t € la,b) and |f/(t)|7 = (s+1)9t%, t € [a,]] is a s-convex function in the second
sense since gs € (0,1) and (s + 1)? > 0, and we may take M = (s +1)b°. O
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