
Bull. Korean Math. Soc. 49 (2012), No. 4, pp. 761–765
http://dx.doi.org/10.4134/BKMS.2012.49.4.761

STRONG COHOMOLOGICAL RIGIDITY OF

A PRODUCT OF PROJECTIVE SPACES

Suyoung Choi and Dong Youp Suh

Abstract. We prove that for a toric manifold (respectively, a quasitoric
manifold) M , any graded ring isomorphism H

∗(M) → H
∗(
∏

m

i=1 CP
ni)

can be realized by a diffeomorphism (respectively, a homeomorphism)∏
m

i=1 CP
ni → M .

1. Introduction

The cohomological rigidity problem for toric manifolds asks whether the inte-
gral cohomology ring of a toric manifold determines its topological type or not.
So far, there is no negative answer to the question but some positive results.
In [2], the authors with M. Masuda show that if M is a toric manifold whose
cohomology ring is isomorphic to that of

∏m
i=1 CP

ni , a product of complex
projective spaces, then M is actually diffeomorphic to

∏m
i=1 CP

ni , which gives
a positive result to the cohomological rigidity problem.

On the other hand, one might ask a stronger question as follows. Throughout
this paper, H∗(X) denotes the integral cohomology ring of a topological space
X .

Problem 1.1. Let M and N be toric manifolds, and ϕ : H∗(N) → H∗(M)
a graded ring isomorphism. Then, does there exist a homeomorphism or a

diffeomorphism f : M → N such that f∗ = ϕ?

We call this the strong cohomological rigidity problem for toric manifolds.
Problem 1.1 for homeomorphism is still open. However, the answer to this
question for diffeomorphism is negative in general; for instance, it is shown
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by Friedman and Morgan [5] that some cohomology ring automorphism of

CP 2#10CP 2 is not induced by its self-diffeomorphism while it is a toric man-
ifold. Nevertheless, we do conjecture that the strong cohomological rigidity
(even for diffeomorphism) holds for some specific subclass of toric manifolds
such as generalized Bott manifolds [3, Section 5].

A generalized Bott tower of height m is a sequence of CPni-bundles with
ni ≥ 1:

(1) Bn
πn−→ Bn−1

πn−1

−→ · · ·
π2−→ B1

π1−→ B0 = {a point},

where each πi : Bi → Bi−1 for i = 1, . . . ,m is the projectivization of a Whitney
sum of ni+1 complex line bundles over Bi−1. We call Bi an i-stage generalized

Bott manifold or a generalized Bott manifold of height i. If all fibration in (1)
are trivial, Bm is

∏m

i=1 CP
ni .

In this article, we would like to answer to Problem 1.1 for the case when
N =

∏m

i=1 CP
ni . Namely, we prove the following theorem.

Theorem 1.2. Let M be a toric manifold. If there is a graded ring iso-

morphism ϕ : H∗(M) → H∗(
∏m

i=1 CP
ni), then there is a diffeomorphism

f :
∏m

i=1 CP
ni →M such that f∗ = ϕ.

Combining Theorem 1.2 with [1, Theorem 8.1], we obtain the following corol-
lary which generalizes [6, Theorem 5.1] treating the case where ni = 1 for any
i. Note that a quasitoric manifold is a topological analogue of toric manifold,
which is introduced by Davis and Januszkiewicz in [4].

Corollary 1.3. Let M be a quasitoric manifold. If there is a graded ring

isomorphism ϕ : H∗(M) → H∗(
∏m

i=1 CP
ni), then there is a homeomorphism

f :
∏m

i=1 CP
ni →M such that f∗ = ϕ.

2. Proof of Theorem 1.2

Let R = Z[x1, . . . , xm]/〈xni+1
i : i = 1, . . . ,m〉 ∼= H∗(

∏m
i=1 CP

ni).

Lemma 2.1. Let y =
∑m

j=1 ajxj ∈ R such that ai 6= 0 for some i. Then

yni 6= 0 in R.

Proof. Suppose yni = 0 on the contrary. Then yni must lie in the ideal

generated by the polynomials x
nj+1
j for j = 1, . . . , n. Since ai 6= 0, yni =

(
∑m

j=1 ajxj)
ni must contain the nonzero monomial term of xni

i . However if a

nonzero multiple of a power of xi appear in the ideal generated by x
nj+1
j for

j = 1, . . . ,m, then the exponent must be at least ni + 1, which is a contradic-
tion. �

Lemma 2.2. If ψ is a graded ring automorphism on R, then there exists a

permutation σ on {1, . . . ,m} such that ni = nσ(i) for all i = 1, . . . ,m and

ψ(xi) = ±xσ(i).
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Proof. Let ψ(xi) =
∑m

j=1 bijxj for i = 1, . . . ,m. Since ψ is an automorphism,

detB = ±1, where B = (bij). Note that the positive integers n1, . . . , nm need
not be distinct. Let S = {N1, . . . , Nk | N1 > · · · > Nk} be the set of distinct
numbers from n1, . . . , nm, and let µ : {1, . . . ,m} → S be the function defined
by µ(i) = ni. Let Jℓ = µ−1(Nℓ) for ℓ = 1, . . . , k.

Claim: B is conjugate to a block upper triangular matrix by a permutation

matrix.

Since xni+1
i = 0 in R, 0 = ψ(xni+1

i ) = (
∑m

j=1 bijxj)
ni+1. Therefore, by

Lemma 2.1, bij = 0 if ni < nj. Hence by an appropriate permutation of the
index set {1, . . . ,m}, we may assume that n1 ≥ n2 ≥ · · · ≥ nm and B is an
upper triangular matrix of the form











CJ1
∗

CJ2

. . .

0 CJk











,

where CJℓ
is the matrix formed from bij with i, j ∈ Jℓ. This proves the claim.

Now let J<ℓ =
⋃

{N∈S|N<Nℓ}
µ−1(N). By the previous claim, if k ∈ Jℓ,

then we may write ψ(xk) =
∑

j∈Jℓ
bkjxj +

∑

j∈J<ℓ
bkjxj . Let us denote zℓ =

∑

j∈Jℓ
bkjxj and wℓ =

∑

j∈J<ℓ
bkjxj for simplicity. Then ψ(xk) = zℓ + wℓ.

Therefore,

0 = ψ(xNℓ+1
k ) = zNℓ+1

ℓ +

(

Nℓ + 1

1

)

wℓz
Nℓ

ℓ +

(

Nℓ + 1

2

)

w2
ℓ z

Nℓ−1
ℓ + · · · .

We note that zℓ 6= 0 since detB = ±1. On the other hand, there is no way to
get the polynomial equation

−

(

Nℓ + 1

1

)

wℓz
Nℓ

ℓ = zNℓ+1
ℓ +

(

Nℓ + 1

2

)

w2
ℓ z

Nℓ−1
ℓ + · · ·

in the ring R unless wℓ = 0. Hence, zNℓ+1
ℓ = 0. But then there is a unique

nonzero bij for i ∈ Jℓ, and, hence, bij = ±1.
Therefore, we have shown that B is conjugate to a diagonal matrix all of

whose diagonal entries are ±1. Therefore if k ∈ Jℓ, then ψ sends xk to ±xi for
some i ∈ Jℓ. �

Corollary 2.3. Any graded ring automorphism ψ on H∗(
∏m

i=1 CP
ni) is in-

duced by a self-diffeomorphism g on
∏m

i=1 CP
ni , i.e., g∗ = ψ.

Proof. Note that any automorphism ψ on

H∗(

m
∏

i=1

CPni) = Z[x1, . . . , xm]/〈xni+1
i : i = 1, . . . ,m〉
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of the form ψ(xi) = ±xσ(i) for some permutation σ satisfying ni = nσ(i) for
all i is realized by composition of permutating factors and reversing orienta-
tions of factors of

∏m

i=1 CP
ni , appropriately; namely, ψ is induced by a self-

diffeomorphism on
∏m

i=1 CP
ni . Hence the corollary follows from Lemma 2.2.

�

We are now ready to prove Theorem 1.2. Let ϕ : H∗(M) → H∗(
∏m

i=1 CP
ni)

be a graded ring isomorphism. As mentioned in the introduction, by [2, Theo-
rem 1.1], there is a diffeomorphism h :M →

∏m
i=1 CP

ni . Then we have

H∗(M)
ϕ

// H∗(
∏m

i=1 CP
ni)

H∗(
∏m

i=1 CP
ni)

h∗

OO

ϕ◦h∗

66
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧

.

By Corollary 2.3, there is a diffeomorphism

g :

m
∏

i=1

CPni →

m
∏

i=1

CPni

such that g∗ = ϕ ◦ h∗. Then ϕ = (ϕ ◦ h∗) ◦ (h∗)−1 = g∗ ◦ (h−1)∗ = (h−1 ◦ g)∗.
Therefore, the diffeomorphism

f := h−1 ◦ g :

m
∏

i=1

CPni →M

induces ϕ, which proves the theorem.
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