DOI QR코드

DOI QR Code

Effects of Green Tea Catechin on Microsomal Phospholipase A2 Activity and Arachidonic Acid Cascade in Rat Lung Exposed to Microwave

마이크로웨이브를 조사한 흰쥐 폐조직의 Phospholipae A2 활성과 Arachidonic Acid Cascade계에 미치는 녹차 Catechin의 영향

  • Kim, Mi-Ji (Dept. of Hotel, Restaurant and Culinary Arts, Daegu Health College)
  • 김미지 (대구보건대학교 호텔외식조리학부)
  • Received : 2012.02.23
  • Accepted : 2012.06.19
  • Published : 2012.07.31

Abstract

In the present study, the effects of green tea catechin on microsomal phospholipase $A_2$ ($PLA_2$) activity and the arachidonic acid (AA) cascade in the lungs of microwave exposed rats were investigated. One Sprague-Dawley male rats weighting $100{\pm}10$ g was randomly assigned to the normal group and three were assigned to the microwave exposed groups. The microwave exposed groups were subdivided into three groups according to the levels of dietary catechin supplementation: catechin free diet (MW) group, 0.25% catechin (MW-0.25C) group and 0.5% catechin (MW-0.5C) group. Rats were sacrificed on the 6th day after microwave irradiation (2.45 GHz, 15 min). The lung microsomal $PLA_2$ activity in the MW and MW-0.25C groups was 30% and 15% greater than that of the normal group, respectively, whereas no significant difference between the normal group and MW-0.5C group was observed. The percentage of phosphatidylethanolamine (PE) hydrolyzed in the lung microsome in the MW, MW-0.25C and MW-0.5C group increased by 47%, 18% and 20%, respectively, due to microwave irradiation. The formation of thromboxane $A_2$ ($TXA_2$) in the lung microsome was 50% greater in the MW group than in the normal group. However, the levels of $TXA_2$ in the MW-0.25C and MW-0.5C group were normal. The formation of prostacyclin ($PGI_2$) in the lung microsome was 31% lower in the MW group than in the normal group, while the levels of $PGI_2$ in the MW-0.25C and MW-0.5C group were similar to the normal group. The lung microsomal thiobarbituric acid reactive substances (TBARS) concentration, which can be used as an index of lipid peroxide was 34% greater in the MW group, when compared with the normal group. However, there was no difference between the MW-0.25C, MW-0.5C and normal groups. In conclusion, lung function appeared to be improved by green tea catechin supplementation due to its antithrombus action, which in turn controls the AA cascade system.

본 연구에서는 흰쥐에 마이크로웨이브를 조사한 후 폐조직을 대상으로 폐조직 기능장애를 일으키는데 주된 역할을 하는 혈전생성능을 arachidonic acid(AA) cascade계를 통해 관찰하여 마이크로웨이브에 의한 폐혈관 기능장애와 그에 대한 녹차 catechin의 항혈전 효과를 규명하고자 하였다. 실험군은 마이크로웨이브를 조사하지 않은 정상군과 마이크로웨이브를 조사한 군으로 나누고 마이크로웨이브 조사 군은 다시 식이 중 catechin 공급수준에 따라 catechin을 넣지 않은 군(MW group), catechin을 0.25% 급여한 군(MW-0.25C group), catechin을 0.5% 급여한 군(MW-0.5C group)으로 나누었다. 식이와 음료는 자유 섭식시키면서 2주간 사육한 후 2.45 GHz 대역의 주파수를 15분간 1회 조사하였으며 마이크로웨이브 조사 후 6일째 동물을 희생시켜 본 실험에 사용하였다. 실험군의 실험동물 수는 각각 10마리로 실험하였다. $PLA_2$ 활성은 마이크로웨이브 조사로 30% 증가하였으며 MW-0.25C군은 15% 증가였으나 MW-0.5C군은 정상군 수준이었다. 인지질분자종의 변화를 관찰한 결과 lyso PE가 MW군에서 47% 증가되었으나 MW-0.25C군 및 MW-0.5C군에서는 각각 18%, 20% 증가되었다. $TXA_2$ 생성은 MW군에서 50%의 현저한 증가를 보였으나 catechin 공급군인 MW-0.25C군 및 MW-0.5C군은 정상군 수준이었다. $PGI_2$ 생성은 MW군에서 31%의 유의적인 감소를 보였으나 catechin 공급군인 MW-0.25C군 및 MW-0.5군은 정상군 수준이었다. 따라서 혈전생성지표인 $PGI_2/TXA_2$ ratio는 정상군에 비해 MW군에서 43% 유의적으로 감소되었으나 MW-0.25C군 및 MW-0.5C군은 정상군 수준이었다. 지질과산화물의 함량은 MW군에서 34% 유의적으로 증가하였으며 catechin 공급군은 정상군 수준이었다. 결론적으로 마이크로웨이브에 피폭된 흰쥐 폐조직에서는 AA cascade계의 율속 효소인 $PLA_2$ 활성의 증가와 혈전생성지표로 인식하는 $PGI_2/TXA_2$ ratio의 불균형이 초래되었으나 catechin은 TBARS 농도를 낮추면서 $PLA_2$ 활성을 저해시키고 AA cascade계를 개선시킴으로써 항혈전 작용을 나타내었다.

Keywords

References

  1. Jing J, Yuhua Z, Xiao-qian Y, Rongping J, Dong-mei G, Xi C. 2012. The influence of microwave radiation from cellular phone on fetal rat brain. Electromagon Biol Med 31: 57-66. https://doi.org/10.3109/15368378.2011.624652
  2. Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Ocak AR. 2009. Effects of mobile phone exposure on apoptotic glial cells and status of oxidative stress in rat brain. Electromagn Biol Med 28: 342-354. https://doi.org/10.3109/15368370903206556
  3. Esmekaya MA, Ozer C, Seyhan N. 2011. 900 MHz pulsemodulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tisssue. Gen Physiol Biophys 30: 84-89. https://doi.org/10.4149/gpb_2011_01_84
  4. Garaj-Vrhovac V, Gajski G, Trosić I, Pavicic I. 2009. Evaluation of basal DNA damage and oxidative stress in Wistar rat leukocytes after exposure to microwave radiation. Toxicology 259: 107-112. https://doi.org/10.1016/j.tox.2009.02.008
  5. Dermers PA, Thomas DB, Rogenblatt KA. 1991. Occupational exposure to electromagnetic fields and breast cancer in men. Am J Epidemiol 134: 340-349. https://doi.org/10.1093/oxfordjournals.aje.a116095
  6. Kim MJ, Choi JH, Kim SY, Kim JH, Lee JH, Rhee SJ. 2002. Effects of green tea catechin on enzyme activities and gene expression of antioxidative system in rat liver exposed to microwave. Nutrition Research 22: 733-744. https://doi.org/10.1016/S0271-5317(02)00365-2
  7. Kim MJ, Lee JH, Rhee SJ. 2001. Effects of catechin on mixed function oxidase system and oxidative damage in rat liver exposed to microwave. Korean J Nutr 34: 299-305.
  8. Harman D. 1956. Aging: a theory based on free radical and radical chemistry. J Gerontol 11: 298-300. https://doi.org/10.1093/geronj/11.3.298
  9. Giulivi C, Lavango CC, Lucesoli F, Bermudez MJ, Boveris A. 1995. Lung damage in paraquata poisoning and hyperbarbic oxygen exposure: superoxide-mediated inhibition of phospholipase $a_2$. Free Radical Biol Med 18: 203-213. https://doi.org/10.1016/0891-5849(94)00111-V
  10. Taleb A, Witztum JL, Tsimikas S. 2011. Oxidized phospholipid on apo B-100-containing lipoproteins: a biomarker predicting cardiovascular disease and cardiovascular events. Biomark Med 5: 673-694. https://doi.org/10.2217/bmm.11.60
  11. Yalcin M, Aydin C. 2011. The role of the central arachidonic acid-thromboxane $A_2$ cascade in cardiovascular regulation during hemorrhagic shock in rats. Prostaglandins Leukot Essent Fatty Acids 85: 61-66. https://doi.org/10.1016/j.plefa.2011.05.003
  12. Burden A, Mas E, Henry P, Duranld T, Galano JM, Roberts LT, Mori TA, Croft KA. 2011. The effects of oxidation products of arachidonic acid and n3 fatty acids on vascular and platelet function. Free Radic Res 45: 469-476. https://doi.org/10.3109/10715762.2010.544730
  13. Kwag OG, Kim SO, Choi JH, Rhee IK, Choi MS, Rhee SJ. 2001. Vitamin E improves microsomal phospholipase $A_2$ activity and the arachidonic acid cascade in kidney of diabetic rats. J Nutr 131: 1297-1301. https://doi.org/10.1093/jn/131.4.1297
  14. Kim KR, Kim MJ, Rhee SJ. 2001. Effects of vitamin E on arachidonic acid cascade in platelets and aorta of acute cadmium-poisoned rats. Nutr Res 21: 657-665. https://doi.org/10.1016/S0271-5317(01)00265-2
  15. Muramatsu K, Fukuyo M, Hara Y. 1986. Effect of green tea catechins on plasma cholesterol-fed rats. J Nutr Sci Vitaminol 32: 613-622. https://doi.org/10.3177/jnsv.32.613
  16. Suzuki KT, Yaguchi K, Ohnuki R, Kishikawa M, Yamada YK. 1983. Extend of cadmium accumulation and its effect on essential metal in liver, kidney and body fluid. J Toxicol Environ Health 11: 713-726. https://doi.org/10.1080/15287398309530379
  17. Suzuki KT, Yaguchi K, Ohnuki R, Kishikawa M, Yamada YK. 1983. Extend of cadmium accumulation and its effect on essential metal in liver, kidney and body fluid. J Toxicol Environ Health 11: 713-726. https://doi.org/10.1080/15287398309530379
  18. Cheng SJ. 1986. The preliminary study of inhibitory effects of green tea antioxidant on mutation. Acta of Experimental Biology 9: 328-334.
  19. Hayashi E, Hayashi M, Yamazoe H. 1990. Pharmacological action of tea extract on central nervous system in mice. Oyo Yakuri 40: 351-356.
  20. Kada T, Kanaeko K, Matzuzaki S, Matsuzaki T, Hara Y. 1985. Detection and chemical identification of natural bioantimutagens. Mutat Res 150: 127-132. https://doi.org/10.1016/0027-5107(85)90109-5
  21. Fugita Y, Yamane T, Tanaka M, Kuwata K, Okuzumi J, Takehashi T, Fujiki H, Okuda T. 1989. Inhibitory effect of (-)-epigallocatecgin gallate on carcinogenesis with N-ethyl-N'-nitro N-nitrosoguanidine in mouse duodenum. Jap J Cancer Res 80: 503-505. https://doi.org/10.1111/j.1349-7006.1989.tb01666.x
  22. Matsuzaki T, Hata Y. 1987. Antioxidative activity of tea leaf catechins. Journal of the Agricultural Chemical Society of Japan 59: 129-134.
  23. Yoon YH, Rhee SJ. 1994. Effect of Korea green tea, oolong tea and black tea beverage on the antioxidative detoxification in rat poisoned with cadmium. Korean J Nutr 27: 1007-1017.
  24. Yang JA, Choi JH, Rhee SJ. 1999. Effects of green tea catechin on phospholipase $A_2$ activity and antithrombus in streptozotocin diabetic rats. J Nutr Sci Vitaminol 45: 337-346. https://doi.org/10.3177/jnsv.45.337
  25. Katzuko N, Midori Y, Chikusa T, Mitsuo N. 1991. Platelet aggregation inhibitory activity of tea extracts. Nippon Shohuhin Kogyo Gakkishi 38: 189-195. https://doi.org/10.3136/nskkk1962.38.189
  26. Rhee SJ, Kim MJ, Kwag OG. 2002. Effects of green tea catechin on prostaglandin synthesis of renal glomerular and renal dysfunction in streptozotocin-induced diabetic rats. Asia Pacific J Clin Nutr 11: 232-236. https://doi.org/10.1046/j.1440-6047.2002.00312.x
  27. Dole VP, Meinertz HJ. 1960. Micro determination of longchain fatty acid in plasma and tissue. Biol Chem 235: 2592-2599.
  28. Marinetti GV. 1962. Chromatographic separation, identification and analysis. J Lipid Res 3: 1-11.
  29. Omura T, Sato R. 1964. The carbon mono oxide binding pigments of liver microsome II. solubilization, purification and properties. J Biol Chem 239: 2379-2385.
  30. Lowry OH, Rosenbrouth NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  31. Gresharm A, Masferrer J, Chen X, Lealkhouri S, Pentland AP. 1996. Increased synthesis of high molecular-weight $cPLA_2$ mediates early UV-induced $PGE_2$ in human skin. Am J Phyiol 270: 1037-1050. https://doi.org/10.1152/ajpcell.1996.270.4.C1037
  32. Kalns J, Ryan KL, Mason PA, Bruno JG, Gooden R, Kiel JL. 2000. Oxidative stress precedes circulatory failure induced by 35-GHz microwave heating. Shock 13: 52-59. https://doi.org/10.1097/00024382-200013010-00010
  33. Borowitz SM, Montgomery C. 1989. The role of phospholipase $A_2$ in microsomal lipid peroxidation induced with t-butyl hydroperoxide. Biochem Biophys Res Commun 158: 1021-1028. https://doi.org/10.1016/0006-291X(89)92824-6
  34. Choi JH, Cha BK, Rhee SJ. 1998. Effects of green tea catechin on hepatic microsomal phospholipase $A_2$ activities and changes of hepatic phospholipid species in streptozotocin-induced diabetic rats. J Nutr Sci Vitaminology 44: 673-683. https://doi.org/10.3177/jnsv.44.673
  35. Li SR, Virgolini I, Wandl E, Yang Q, Sinzinger H. 1992. Effects of irradiation on prostaglandin system of human hypernephroma cell. Agents Action Suppl 37: 53-57. https://doi.org/10.1007/BF01987890
  36. Piana ML, Hellums JD, William WL Jr. 1981. Effects of microwave irradiation on humane blood platelets. IEEE Trans Biomed Eng 28: 661-664. https://doi.org/10.1109/TBME.1981.324757