DOI QR코드

DOI QR Code

실물 재하시험을 통한 성토사면에 근접한 철도 전철주기초의 저항모멘트 평가

Experimental Evaluation of the Moment Capacity of a Railway Electric Pole Foundation Adjacent to a Fill Slope

  • 투고 : 2011.09.05
  • 심사 : 2012.06.19
  • 발행 : 2012.06.29

초록

철도선로에 설치되는 전철주기초의 모멘트에 대한 거동을 파악하기 위한 실물 재하시험을 수행하였다. 현행 시공방법에 따라 현장타설방식으로 설치된 직경 75cm, 깊이 2.5m의 원형 전철주기초 2본에 대하여 실제 조건과 동일한 모멘트 위주의 하중을 가하여 기초의 파괴모멘트를 확인하였다. 성토사면이 기초의 저항모멘트에 미치는 영향을 평가하기 위하여 사면방향과 사면반대방향으로 각각 모멘트를 가하였다. 국내 설계기준에 따라 성토지형에 설치된 전철주 기초는 파괴 이전까지는 변위가 거의 발생하지 않다가 급격한 전도로 파괴되는 취성거동을 보이는 것을 규명하였다. 성토사면의 영향으로 기초의 파괴모멘트가 30% 정도 감소하는 것으로 평가되었으며, 이를 토대로 전철주기초 설계에서 사면의 영향을 고려하기 위한 지형계수(K)로 0.7을 제안하였다. 또한 실물 재하시험 결과로 나타난 파괴모멘트를 국내외 설계방법의 저항모멘트 산정 결과와 비교함으로써 그 적합성을 평가하였다.

The moment responses of electric pole foundations for a railway were investigated using real-scale load tests. Large overturning moments were applied to two circular rigid piles with a 0.75 m diameter and a 2.5 m embedded depth; the circular rigid piles were installed in an actual railway embankment fill. Two different loading directions-toward the fill slope and toward the track -were applied to evaluate the influence of the fill slope on the moment capacities of the foundations. It was found that the failure of the foundations that were constructed according to Korean railway practices exhibited a sudden overturning pattern without any significant pre-failure displacement. The moment capacity toward the fill slope was less than the moment capacity toward the track by 30%. From the test results, the geometry factor (K), which accounted for the reduction of the moment capacity, due to the fill slope, was 0.7. Moment capacities determined from the load tests were compared with those predicted from three existing design methods, and their applicability was discussed.

키워드

참고문헌

  1. Balfour Beatty Construction Ltd. (1986), Report on foundation design for overhead catenary system, Tuen Mun LRT, Interim report, BBPCL.
  2. Brinch Hansen J. (1961), "The ultimate resistance of rigid piles against transversal forces", The Danish Geotechnical Institute, Bulletin No.12, Copenhagen, pp.1-9.
  3. Broms B. B. (1964), "Lateral resistance of piles in cohesionless soils", J of Soil Mech and Found Eng Div, ASCE, 90, pp.79-99.
  4. Dickin E. A and Nazir R. (1999), "Moment-carrying capacity of short pile foundations in cohesionless soil", J Geotech Geoenviron Eng, ASCE, 125, pp.1-10. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(1)
  5. Dickin E. A. and Laman M. (2003), "Moment Response of Short Rectangular Piers in Sand", Computers and Structures, 81, pp.2717-2719. https://doi.org/10.1016/S0045-7949(03)00337-7
  6. Kiessling, F, Puschmann, R and Schmieder, A. (2009), Contact lines for electric railways : planning, design, implementation, Publicis publishing, Eriangen.
  7. Korea Rail Network Authority (2004), 철도설계편람 (전철전력편:전차선), Korea Rail Network Authority, Daejeon.
  8. Korea Rail Network Authority (2005), 고속철도 설계기준, 노반편, Korea Rail Network Authority, Daejeon.
  9. Korea Rail Network Authority (2009), 2009년도 철도 전철화율 산정 보고, Korea Rail Network Authority, Daejeon.
  10. Korea TGV Consortium (1995), Basic Environmental Data for Catenary Design. KTC.
  11. Korea Transport Institute & KRTC (2009), 국가철도망 전철화 종합 계획 수립을 위한 연구, Ministry of Transport and Maritime Affairs.
  12. Mohammadi S. D., Nikoudel M. R., Rahimi, H. and Khamehchiyan, M. (2008), "Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils", Engineering Geology, 101, pp.195-203. https://doi.org/10.1016/j.enggeo.2008.05.006
  13. UIC/ORE (1957), Calculation of catenary masts and foundations. Interim Report No. 1, International Union of Railways/Office for Research and Experiments, Utrecht.