DOI QR코드

DOI QR Code

영양 용화광산의 광미 및 침출수의 광물학적 및 지화학적 특성 연구

Studies on Mineralogical and Geochemical Characterization of Tailings and Leachate Water in Yonghwa Mine, Yeongyang Area

  • 강한 (아름다운환경건설(주)) ;
  • 김영훈 (안동대학교 환경공학과) ;
  • 장윤득 (경북대학교 지질학과) ;
  • 김정진 (안동대학교 지구환경과학과)
  • Kang, Han (Beautiful Environment Construction Corporation) ;
  • Kim, Young-Hun (Department of environmental Engineering, Andong National University) ;
  • Jang, Yun-Deug (Department of Geology, Kyungpook National University) ;
  • Kim, Jeong-Jin (Department of Earth and Environmental Sciences, Andong National University)
  • 투고 : 2012.04.16
  • 심사 : 20120000
  • 발행 : 2012.06.28

초록

용화광산의 광미와 침출수에 대한 분석을 실시하여 광미로부터 부과될 수 있는 성분을 예측하고, 침출수가 주변하천으로 유입될 때 오염물질의 거리에 따른 변화를 측정하였다. 하천수의 거리에 따른 변화는 갱내수와 침출수가 유출되는 지점에는 대체로 높게 나타나고 하류로 갈수록 이온의 농도는 급격히 낮아진다. 이는 침출수에 비해 훨씬 유량이 많은 비오염하천수에 의한 희석효과 때문이다. 광미는 붉은색과 노란색으로 구분되며 붉은색 광미의 주 구성광물은 석영, 일라이트, 플럼보자로사이트와 약간의 섬아연석이며 노란색 광미는 백운모, 석영, 플럼보자로사이트(Plumbojarosite) 그리고 소량의 황동석(Chalcopyrite)과 섬아연석(Sphalerite)을 포함하고 있다. 침출수에서 높은 값을 나타내는 Pb, Zn 등은 광미에 포함된 플럼보자로사이트와 섬아연석의 용해작용에 의한 것으로 하천수의 오염에 주 원인으로 작용하고 있다.

Current study includes the analysis of mine tailings and leachate water and prediction of species originated from the tailings. The variation of contaminants were measured upon the distance from the tailings to the nearby stream. The ions concentration was highest at the tailings and pit mouth and it becomes lower as it goes far away from the origin. This is the reason that the leachate was diluted with the uncontaminated stream water. The tailings were mainly classified into reddish one and yellow one. The main mineral of reddish tailings were quarts, illite, plumbojarosite and a small amount of sphalerite. The main mineral of yellow tailings were muscovite, quarts, plumbojarosite, and a small amount of chalcopyrite and sphalerite. Pb and Zn were found in the leachate in high concentration and become the major contaminants. These come from the dissolution of plumbojarosite and sphalerite contained in the mine tailings.

키워드

참고문헌

  1. Alpers, C.N. and Nordstrom, D.K. (1994) Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California. In Environmental Geochemistry of Sulfide Oxidation (C.N. Alpers & D.W. Blowes, eds.). Am. Chem. Soc. Symp. Ser., v.550, p.324-344.
  2. Alpers, C.N., Nordstrom, D.K. and Ball, J.W. (1989) Solubility of jarosite solid solutions precipitated from acid mine water, Iron mountain, California, USA. Sci. Geol. Bull. v.42, p.281-289.
  3. Appel, C.A. and Reilly, T.E. (1994) Summary of selected computer programs produced by the U.S. Geological Survey for simulation of ground-water flow and quality. v.4, p.98.
  4. Bottcher, J.O.S. and Duynisveld, H.M. (1985) Verikale Stoffkonzentrations profile im Croundwasser eines Lockergesteins-Aquifers und deren Interpretation. Z. dt. Geol. Ges., v.136, p.543-552.
  5. Cheong, Y.W. (2004) An Overview of Coal Mine Drainage Treatment. Econ. Environ. Geol., v.37, p.107-111.
  6. Clevenger, A. (1990) Calorimetric Study of the Kinetics of $Al_3Ni$ Nucleation and Growth During Reactions in Al/Ni Thin Films. v.26, p.203-208.
  7. Daviesa H., Weberb, P., Lindsayb, P., Crawa, D. and Popec, J. (2011) Characterisation of acid mine drainage in a high rainfall mountain environment, New Zealand. Sci, Total Environ. v.409, p.2971-2980. https://doi.org/10.1016/j.scitotenv.2011.04.034
  8. Davis, S.R., McMahon, R.J. and Cousins, R.J. (1998) Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zincdependent zinc transporter-1 expression. Jour. Nutrition. v.128, p.825-831. https://doi.org/10.1093/jn/128.5.825
  9. Equeenuddin, S.M., Tripathy, S., Sahoo, P.K. and Panigrahi, M.K. (2010) Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. Jour, Geochem. Explor., v.105, p.75- 82. https://doi.org/10.1016/j.gexplo.2010.04.006
  10. Humez, A.L., Juste, C. and Prost, R. (1997) A new assessment of mobility of elements in sediments and wastes. Chem. Speciation and Bioavailability, v.9, p.57-65. https://doi.org/10.1080/09542299.1997.11083286
  11. Jennings, S.R. and Dollhopf. D.J. (1995) Acid-base account effectiveness for determination of mine waste potential acidity. Jour. Hazardous Materials. v.41, p.161-175. https://doi.org/10.1016/0304-3894(95)00003-D
  12. Ji, S.W and Cheong, Y.W. (2005) Experiment of Reactive Media Selection for the Permeable Reactive Barrier Treating Groundwater contaminated by Acid Mine Drainage. Econ. Environ. Geol., v.38, p.237-245.
  13. Jung, M.C. (2003) Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea. Econ. Environ. Geol., v.36, p.111-121.
  14. Jurjovec, J., Ptacek, C.J. and Blowes, D.W. (2002) Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim, Cosmochim. Acta, v.66, p.1511-1523. https://doi.org/10.1016/S0016-7037(01)00874-2
  15. Kang, M.J., Lee, P.K. and Youm, S.J. (2006) Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine. Econ. Environ. Geol., v.39, p.213-227.
  16. Kedziorek, A.M., Alain, C.M. and Fabrice, C. (1998) Leaching of Cd and Pb from a Polluted Soil during the Percolation of EDTA: Laboratory Column Experiments Modeled with a Non-Equilibrium Solubilization Step. Environ. Sci, Technol., v.32, p.1609-1614. https://doi.org/10.1021/es970708m
  17. Kim, J.J. and Kim, S.J. (2002) Variations in Geochemical characteristics of the Acid Mine Drainages due to Mineral-Water Interactions in Donghae Mine Area in Taebaek, Korea. Econ. Environ. Geol., v.35, p.55-66.
  18. Kim, J.J. and Kim, S.J. (2004) Seasonal factors controlling mineral precipitation in the acidminedrainage at Donghae coal mine, Korea. Sci. Total Environ., v.325, p.181-191. https://doi.org/10.1016/j.scitotenv.2003.10.038
  19. Kim, S.O., Jung, Y.I. and Cho, H.G. (2006) Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area. Jour. Miner. Soc. Korea, v.19, p.171-187.
  20. Lee, W.C., Jeong, J.O., Kim, J.Y. and Kim, S.O. (2010) Characterization of Arsenic Immobilization in the Myungbong Mine Tailing. Econ. Environ. Geol., v.43, p.137-148.
  21. Nordstrom, D.K. and Ball, J.W. (1984) Chemical models, computer programs and metal complexation in natural water. In complexation of trace metals in natural water. p.149-164.
  22. Oh, D.G., Kim, J.Y. and Cheon H.T. (1995) Geochemistry of Acid Mine Water and Stream Sediment around the Donghae Coal Mine. Econ. Environ. Geol. v.28, p.213-220.
  23. Park, C.Y., Jeong, Y.J. and Kang, J.S. (2000) Geochemistry and Mineralogy of Mine Drainage Water Precipitate and Evaporite Minerals In the Hwasoon Area. Econ. Environ. Geol., v.33, p.391-404.
  24. Schecher, W.D. and Driscoll, C.T. (1987) An evaluation of uncertainty associated with aluminum equilibrium calculations. Water Resources Research v.23, p.525- 534. https://doi.org/10.1029/WR023i004p00525
  25. Sear, S.O. and Langmuir, D. (1982) Sorption and claymineral equilibria controls on moisture chemistry in a C-horizon soil. Jour. Hydrol. v.56, p.287-308. https://doi.org/10.1016/0022-1694(82)90019-1
  26. Song, S.H., Min, E.S., Kim, M.H. and Lee, H.K (1997) Pollution by Acid Mine Drainages from the Daeseong Coal Mine In Keumsan. Econ. Environ. Geol., v.30, p.105-116.
  27. Walder, I.F., and Chavez, W.X. (1995) Mineralogical and geochemical behavior of mill tailing material produced from lead-zinc skarn mineralization, Hanover, Grant County, New Mexico, USA. Environ. Geol., v.26, p.1-18. https://doi.org/10.1007/BF00776027