DOI QR코드

DOI QR Code

Analytical Proof of Conservation of Power in the LTV Phase Noise Theory for Noisy Oscillators

선형시변 발진기 위상잡음 이론의 전력 보존성의 증명

  • 전만영 (동양대학교 정보통신공학과)
  • Received : 2012.06.29
  • Accepted : 2012.08.09
  • Published : 2012.08.31

Abstract

This study derives a generalized PSD formula in the LTV phase noise theory for noisy oscillators. The derived formula analytically proves that the LTV phase noise theory can predict the conservation of the power in the noisy oscillation signals. Additionally, the derived formula allows the theory to account for the behavior of the power spectrum over the entire frequency range including the regions around higher harmonics as well as fundamental frequency.

본 연구에서는 선형시변 발진기 위상잡음 이론에 있어서 전력 스펙트럼 밀도식의 일반화된 형태를 유도한다. 유도된 전력 스펙트럼 밀도식을 바탕으로 선형시변 발진기 위상잡음 이론은 발진 신호의 전력 보존성을 예측할 수 있음을 본 연구에서 증명한다. 게다가, 유도된 전력 스펙트럼 밀도식은 선형시변 발진기 위상잡음 이론이 기본 주파수와 그 하모닉을 포함하는 전 주파수 영역에 걸친 전력 스펙트럼의 특성을 설명 할 수 있게 한다.

Keywords

References

  1. A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE J. Solid-State Circuits, Vol. 33, No. 2, pp. 179-194, Feb. 1998. https://doi.org/10.1109/4.658619
  2. A. Hajimiri, S. Limotyrakis, and T. H. Lee, "Jitter and phase noise in ring oscillators," IEEE J. Solid-State Circuits, Vol. 34, No. 6, pp. 790-804, June 1999. https://doi.org/10.1109/4.766813
  3. A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Boston, MA: Kluwer Academic, 1999.
  4. T. H. Lee and A. Hajimiri, "Oscillator phase noise: a tutorial," IEEE J. Solid-State Circuits, Vol. 35, No. 3, pp. 326-336, March, 2000. https://doi.org/10.1109/4.826814
  5. P. Andreani, X. Wang, L. Vandi, and A. Fard, "A study of phase noise in Colpitts and LC-tank CMOS oscillators," IEEE J. Solid-State Circuits, Vol. 40, No. 5, May 2005.
  6. A. Demir, Analysis and simulation of noise in nonlinear electronic circuits and systems, Ph. D. Thesis, University of California, Berkeley, May 1997.
  7. A. Demir and A. L. Sangiovanni-Vincentelli, Analysis and simulation of noise in nonolinear electric circuits and systems, Kluwer Academic Publications, 1998.
  8. A. Demir, "Phase noise in oscillators," Proc. of Int. Conf. on CAD, pp. 170-177, Nov. 1998.
  9. A. Demir, A. Mehrotra, and J. Roychowdhury, "Phase noise in oscillators: a unifying theory and numerical methods for characterization," Proc. of ACM/IEEE Design Automation Conf., pp. 26-31, June 1998.
  10. A. Demir et al., "Phase noise in oscillators: a unifying theory and numerical methods for characterization," IEEE Trans. Circuits Syst.-I, Vol. 47, pp. 655-674, May, 2000.
  11. A. Demir, "Floquet theory and non-linear perturbation analisis for oscillators with differential-algebraic equations," Int. J. Circ. Theor. Appl., Vol. 28, pp, 163-185, 2000. https://doi.org/10.1002/(SICI)1097-007X(200003/04)28:2<163::AID-CTA101>3.0.CO;2-K
  12. A. Demir, "Phase noise and timing jitters in oscillators with colored-noise sources," IEEE Trans. on Circuits and Sistems-Ι: fudamental theory and applications, Vol. 49, No. 12, Dec. 2002.
  13. A. Demir and J. Roychowdhury, "A reliable and efficient procedure for oscillator PPV computation with phase noise macromodelinf applications," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2, pp. 188-197, Feb., 2003. https://doi.org/10.1109/TCAD.2002.806599
  14. A. Demir and A. L. Sangiovanni-Vincentelli, "Simulation and modeling of phase noise in open-loop oscillators," Proc. of IEEE Custom Integrated Circuits Conf., pp. 453-456, 1996.
  15. A. Demir, "Oscillator noise analysis," Proc. of Int. Conf. on noise and fluctuations 2005, pp. 499-504, 2005.
  16. D. Ham and A. Hajimiri, "Virtual damping and Einstein relation in oscillators," IEEE J. Solid-State Circuits, Vol. 38, No.3, pp. 407-418, March, 2003. https://doi.org/10.1109/JSSC.2002.808283