초록
본 논문은 웹 검색 시스템의 사용자 질의에 대한 키워드 색인 기반의 검색 과정에서 적합 문서를 선별하기 위해 검색 키워드의 의미정보와 사용자의 누적 사용정보를 사용하여 검색 성능을 향상시키는 방법을 소개한다. 검색 키워드 의미 정보를 이용하는 검색 방법은 검색 결과로서 의미적으로 무관한 많은 문서들을 배제할 수 있고, 사용자의 누적된 사용정보는 관심사에 중심을 둔 검색문서들을 상위에 제시할 수 있다. 검색 키워드의 의미정보 지식베이스를 구축하고, 검색 문서들을 색인어와 해당 의미범주로 분류하며, 사용자의 정답 문서 참조 행위에 대한 누적 정보를 순위 결정에 반영하여 검색 성능을 향상시킬 수 있다.
This paper proposes a technique for improving performance using word senses and user feedback in web information retrieval, compared with the retrieval based on ambiguous user query and index. Disambiguation using query word senses can eliminating the irrelevant pages from the search result. According to semantic categories of nouns which are used as index for retrieval, we build the word sense knowledge-base and categorize the web pages. It can improve the precision of retrieval system with user feedback deciding the query sense and information seeking behavior to pages.