DOI QR코드

DOI QR Code

Histologic and Microstructural Analyses on Postembryonic Development in the Wolf Spider Arctosa kwangreungensis (Araneae: Lycosidae)

광릉늑대거미 (Arctosa kwangreungensis) 배후발생과정의 조직 미세구조 분석

  • 양성찬 (단국대학교 생명과학과) ;
  • 문명진 (단국대학교 생명과학과)
  • Received : 2012.02.15
  • Accepted : 2012.03.26
  • Published : 2012.03.31

Abstract

Histologic and microstructural changes during the postembryonic development of the wolf spider Arctosa kwangreungensis were studied using light and scanning electron microscopy to examine the relationship between a morphological differentiation and behavioral properties. The postembryo with abdominal yolk sac was stayed inactive in the egg case because its muscular and visual systems were not fully developed to a functional level. The first instar spiderlings, developed from the postembryo by a first molting process, started to exhibit its pigmentation on their body cuticles. In particular, undifferentiated cell clusters of central nervous system (CNS) were densely distributed within the cephalothorax, and highly differentiated abdominal ganglion was observed. They had a characteristic visual system looks more like its adult counterpart, and had segmented appendages looks more like the tiny spiders containing well oriented muscular system. After 3rd instar, spiderlings grew more rapidly with accordance to their consistent growth and periodical molting processes. Thus, the relative area of CNS with respect to cephalothorax was gradually decreased, instead a pair of venom glands, musculature, and connectives occupied the residual area. It has been revealed that the early development of spider can be controled by the feeding condition of larval period, since histologic and microstructural differentiations in both appendages and optic system were completed at the second instar. In particular, behavioral properties of the wandering spiders that depend on vision and their running ability were deeply related to physiological differentiation of the microstructural development.

배회성거미류의 배후발생과정에서 형태적 분화가 행동학적 특성으로 발현되는 기전을 규명하기 위하여 광릉늑대거미(Arctosa kwangreungensis) 후기배아와 각 발생 단계의 유충을 실험재료로 그 조직학적 및 미세구조적 변화를 광학 및 주사전자현미경으로 분석하였다. 난황주머니를 가진 후기배아는 부속지의 근육조직과 신경절의 미분화로 비활성상태를 유지하며, 시각기의 신경절과 신경의 발달도 미약하였다. 제1령 유충의 두흉부에서는 미분화된 세포집단이 관찰되고 체색의 발현과 복부신경절의 분화가 현저하였다. 먹이 활동을 시작하는 제2령 유충의 중추신경계에는 신경섬유가 급격히 증가되었고, 성체와 유사한 부속지의 분절구조와 시각기의 조직학적 체제가 확립되었다. 제3령 이후의 유충들은 탈피를 거듭하여 두흉부에서 중추신경계가 차지하는 영역이 축소되었고 독선과 근육조직, 그리고 결합조직등의 활발한 분화가 진행되었다. 먹이활동을 시작하는 제2령 유충 단계에서 부속지와 시각기의 조직학적 발생과 이를 통제하는 신경계의 분화가 완료되는 것으로 미루어, 섭식환경이 배후발생과정을 조절할 수 있으며, 특히 시각과 부속지에 의존하여 먹이를 포획하는 배회성거미류의 행동 습성이 형태조직학적 분화와 연관되어 있음을 확인할 수 있었다.

Keywords

References

  1. Babu KS: Post embryonic development of the central nervous system of the spider Argiope aurantia (Lucas). J Morphol 146 : 325-342, 1975. https://doi.org/10.1002/jmor.1051460303
  2. Babu KS: Patterns of arrangement and connectivity in the central nervous system of arachnids. In: Barth FG, ed, Neurobiology of Arachnids. pp. 3-19, Springer-Verlag, New York, 1985.
  3. Babu KS, Barth FG: Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104 : 344-359, 1984. https://doi.org/10.1007/BF00312185
  4. Balazs K, Ferenc S: Comparison of autumn and winter development of two wolf spider species (Pardosa, Lycosidae, Araneae) having different life history patterns. J Arachnol 30 : 409-415, 2002. https://doi.org/10.1636/0161-8202(2002)030[0409:COAAWD]2.0.CO;2
  5. Buddle CM: Life history of Pardosa Moesta and Pardosa Mackenziana (Araneae, Lycosidae) in central Alberta, Canada. J Arachnol 28 : 319-328, 2000. https://doi.org/10.1636/0161-8202(2000)028[0319:LHOPMA]2.0.CO;2
  6. Canard A: Analyse nouvelle du développement postembryonnaire des araignees. Revue Arachnologique 7 : 91-102, 1987.
  7. Canard A, Stockman R: Comparative postembryonic development of arachnids. Memoirs of Queensland Museum 33 : 461-468, 1993.
  8. Collatz KG, Mommen T: Lebensweise und jahreszyklische Veränderunger des Stoffbestandes des Spinne Tegenaria atrica CL Koch (Agelenidae). J Comp Physiol 91 : 91-109, 1974. https://doi.org/10.1007/BF00696158
  9. Coyle FA: Ballooning behavior of Ummidia spiderlings (Araneae, Ctenizidae). J Arachnol 13 : 137-139, 1985.
  10. Downes MF: A proposal for standardization of the terms used to describe the early development of spiders, based on a study of Theridion rufipes Luca (Araneae: Theridiidae). Bull Brit Arachnol Soc 7 : 187-193, 1987.
  11. Eason R, Whitcomb WH: Life history of the dotted wolf spider, Lycosa Punctulata Hentz (Araneida: Lycosidae). Arkansas Acad Sci Proc 19 : 11-20, 1965.
  12. Foelix RF: Biology of Spiders (3rd ed). Oxford Univ. Press, New York, pp. 1-419, 2011.
  13. Foradori MJ, Kovoor J, Moon MJ, Tillinghast EK: Relation between the outer cover of the egg case of Argiope aurantia (Araneae: Araneidae) and the emergence of its spiderlings. J Morphol 252 : 218-226, 2002. https://doi.org/10.1002/jmor.1100
  14. Groome JR, Townley MA, de Tschaschell M, Tillinghast EK: Detection and isolation of proctolin-like immunoreactivity in Arachnids: Possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37 : 9-19, 1991. https://doi.org/10.1016/0022-1910(91)90013-P
  15. Hill DE: The structure of the central nervous system of jumping spiders of the genus Phidippus (Araneae: Salticidae). MS Thesis (Republ. ver.), Oregon State Univ., 2006.
  16. Hwang HJ, Moon MJ: Fine structural analysis of the central nervous system in the spider, Achaearanea tepidariorum (Theridiidae: Araneae). Kor J Entomol 33 : 119-126, 2003. https://doi.org/10.1111/j.1748-5967.2003.tb00059.x
  17. Im MS, Kim ST: Field Guide of Korean Spider. Kunkuk Univ. Press, Seoul, pp. 162-176, 2000.
  18. Jackson RR: Life history of Phidippus johnsoni (Araneae, Salticidae). J Arachnol 5 : 145-149, 1978.
  19. Jacqueline K, Arturo MC: Embryonic and postembryonic morphogenesis of the visual, venom-and silk-gland system in two species of peucetia (Araneae: Oxyopidae). Eur J Entomol 92 : 565-571, 1995.
  20. Karnovsky MJ: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27 : 137A, 1965.
  21. Kim JP: Coloured Spider of Korea. Academy Press, Seoul, pp. 260- 290, 2002.
  22. Laurie BM, John SR: Growth and development rates in a riparian spider are altered by asynchrony between the timing and amount of a resource subsidy. Oecologia 156 : 249-258, 2008. https://doi.org/10.1007/s00442-008-0989-y
  23. Levy G: The life cycle of Thomisidae onustus (Thomisidae: Araneae) and outlines for the classification of the life histories of spiders. J Zool (London) 160 : 523-526, 1970.
  24. Liu Y, Andreas M, Waloszek D: Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arthropod Struct Dev 38 : 401-416, 2009. https://doi.org/10.1016/j.asd.2009.04.001
  25. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WG: Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bio- Essays 30 : 487-498, 2008.
  26. Pfannenstiel RS: Development of the cursorial spider, Cheiracanthium inclusum (Araneae: Miturgidae), on eggs of Helicoverpa zea (Lepidoptera: Noctuidae). J Entomol Sci 43 : 418-422, 2008. https://doi.org/10.18474/0749-8004-43.4.418
  27. Robert GB: Arachnid developmental stages: Current terminology. College of the Southwest, Carlsbad, New Mexico, USA. pp. 1- 5, 2005.
  28. Schaefer M: An analysis of diapause and resistance in the egg stage of Floronia bucculenta (Araneida: Linyphiidae). Oecologia 25 : 155-174, 1976. https://doi.org/10.1007/BF00368851
  29. Schaefer M: Life cycle and diapause. In: Nentwig N, ed, Ecophysiology of Spiders. pp. 331-347, Springer-Verlag, New York, 1987.
  30. Stollewerk A, Seyfarth EA: Evolutionary changes in sensory precursor formation in arthropods: Embryonic development of leg sensilla in the spider Cupiennius salei. Dev Biol 313 : 659-673, 2008. https://doi.org/10.1016/j.ydbio.2007.11.003
  31. Stradling DJ: The growth and maturation of the "tarantula", Avicularia avicularia L. Zool J Linn Soc 62 : 291-303, 1978. https://doi.org/10.1111/j.1096-3642.1978.tb01040.x
  32. Teresita CI, Jerome C: The functional morphology of color changing in a spider: development of ommochrome pigment granules. J Exp Biol 211 : 780-789, 2008. https://doi.org/10.1242/jeb.014043
  33. Vachon M: Contribution a l'etude du developpement postembryonnaire des araignees. Premiere note. Generalites et nomenclature des stades. Bull Soc Zool Fr 82 : 337-354, 1957.
  34. Vollrath F: Relative and absolute growth in Nephila clavipes. Verh Naturwiss Ver Hamburg 26 : 277-289, 1983.
  35. Vollrath F: Growth, foraging and reproductive success. In: Nentwig N, ed, Ecophysiology of Spiders. pp. 357-370, Springer-Verlag, New York, 1987.
  36. Weygoldt P: Ontogeny of the arachnid central nervous system. In: Barth RG, ed, Neurobiology of Arachnids. pp. 20-37, Springer- Verlag, New York, 1985.
  37. Wolff C, Hilbrant M: The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 8 : 15- 50, 2011. https://doi.org/10.1186/1742-9994-8-15