DOI QR코드

DOI QR Code

유기용매내성세균 Bacillus sp. BCNU 5006의 유용성

Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006

  • 최혜정 (창원대학교 생물공학협동과정) ;
  • 황민정 (창원대학교 생물학과) ;
  • 김봉수 (창원대학교 생물학과) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 주우홍 (창원대학교 생물공학협동과정)
  • Choi, Hye-Jung (Interdisciplinary Program for Biotechnology, Changwon National University) ;
  • Hwang, Min-Jung (Department of Biology, Changwon National University) ;
  • Kim, Bong-Su (Department of Biology, Changwon National University) ;
  • Jeong, Yong-Kee (Department of Biotechnology, Dong-A University) ;
  • Joo, Woo-Hong (Interdisciplinary Program for Biotechnology, Changwon National University)
  • 투고 : 2012.01.09
  • 심사 : 2012.02.10
  • 발행 : 2012.02.29

초록

In the screening process of organic solvent tolerant bacteria showing good growth in media containing several kinds of organic solvents, one strain was isolated and identified as Bacillus sp. BCNU 5006. The strain was able to tolerate many organic solvents including benzene, toluene, xylene, octane, dodecane, butanol and ethylbenzene. Likewise, it could also utilize these solvents as the sole source of carbon with significant enzyme production. The lipolytic enzyme stability of Bacillus sp. BCNU 5006 was studied in the presence of several kinds of solvents at a 25% (v/v) concentration. The highest enzyme stability was observed in the presence of octane (107%), followed by ethylbenzene (88%), decane (86%), and chloroform (85%). Especially, BCNU 5006 lipase was determined to be more stable than immobilized enzyme (Novozyme 435) in the presence of octane, chloroform and xylene. This organic solvent tolerant Bacillus sp. BCNU 5006 could be expected as a potential bioremediation agent and biocatalyst for biodegradation and provide on organic-solvent-based enzymatic synthetic method in industrial chemical processes.

키워드

참고문헌

  1. Zilli, M., A. Converti, A. Lodi, M. Del Borghi, and G. Ferraiolo (1993) Phenol removal from waste gases with a biological filter by Pseudomonas putida. Biotechnol. Bioeng. 41: 693-671. https://doi.org/10.1002/bit.260410703
  2. Ji, Q., S. Xiao, B. He, and X. Liu (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application for biodiesel production. J. Mol. catal. B: Enzyme 66: 264-269. https://doi.org/10.1016/j.molcatb.2010.06.001
  3. Lee, S. K. and S. B. Lee (2001) Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene. Appl. Microbiol. Biotechnol. 61: 1-12.
  4. Stensel, H. D. and S. Reiber (1983) Industrial wastewater treatment with a new biological fixed film system. Environ. Prog. 2: 110-114. https://doi.org/10.1002/ep.670020208
  5. Pinkart, H. C., J. W. Wolfram, R. Rogers, and D. C. White (1996) Cell envelope changes in solvent-tolerant and solvent sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol. 62: 1129-1132.
  6. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and U. T. Soccol (1999) The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119-131.
  7. Fang, Y., Z. Lu, F. Lv, X. Bie, S. Liu, Z. Ding, and W. Xu (2006) A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent stable lipase. Curr. Microbiol. 53: 510-515. https://doi.org/10.1007/s00284-006-0260-x
  8. Hasan, F., A. A. Shah, and A. Hameed (2006) Industrial applications of microbial lipase. Enzyme Microb. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  9. Yogita, N., Y. Sardessai, and S. Bhosle (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol. prog. 20: 655-660. https://doi.org/10.1021/bp0200595
  10. Dandavate, V., J. Jinjala, H. Keharia, and D. Madamwar (2009) Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100: 3374-3381. https://doi.org/10.1016/j.biortech.2009.02.011
  11. Magnusson, A. O., J. C. Rotticci-Mulder, A. Santagostino, and K. Hult (2005) Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chem. Biochem. 6: 105-1056.
  12. Laane, C. (1987) Medium engineering for bioorganic synthesis. Biocatalysis 30: 80-87.
  13. Doukyu, N. and H. Ogino (2010) Organic solvent-tolerant enzymes. J. Biochem. Bioeng. 48: 270-282.
  14. Ogino, H., K. Miyamoto, and H. Ishikawa (1994) Organic solvent-tolerant bacterium which secretes an organic solvent-stable lipolytic enzyme. Appl. Environ. Microbiol. 60: 3884-3885.
  15. Castro, G. R. and T. Knubovets (2003) Homogeneous biocatalysis in organic solvents and water-organic mixtures. Crit. Rev. Biotechnol. 23: 195-231. https://doi.org/10.1080/714037689
  16. Khmelnitsky, Y. L., A. V. Levashov, N. L. Klyachko, and K. Martinek (1988) Engineering biocatalytic systems in organic media with low water content. Enzyme Microb. Technol. 10: 710-724. https://doi.org/10.1016/0141-0229(88)90115-9
  17. Saito, N. and M. Nei (1987) The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79: 426-434.
  18. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  19. Gaur, R., A. Gupta, and S. K. Khare (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour. Thehnol. 99: 4796-4802. https://doi.org/10.1016/j.biortech.2007.09.053
  20. Winkler, U. K., A Gupta, and M. Stuckmann (1979) Glycoen, hyalurinate, and some other polysaccharides greatly enhance the formation of exolipase by Serratua narcescens. J. Bacteriol. 138: 663-670.
  21. Ogino, H., K. Miyamoto, M. Yasuda, K. Ishimi, and H. Ishikawa (1999) Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochem. Eng. J. 4: 1-6. https://doi.org/10.1016/S1369-703X(99)00026-1
  22. Pinkart C, J. W. Wolfram, R. Rogers, and D. White (1996) Cell envelope changes in solvent tolerant and solvent sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol. 62: 1129-1132.
  23. Tsubata, T., T. Tezuka, and R. Kurane (1997) Change of cell membrane hydrophobicity in a bacterium tolerant to toxic alcohols. Can. J. Microbiol. 43: 295-299. https://doi.org/10.1139/m97-041
  24. Heipieper, H. J., F. Meinhardt, and A. Segura (2003) The cis-, trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229: 1-7. https://doi.org/10.1016/S0378-1097(03)00792-4
  25. Baigorí, M. D., G. R. Castro, and F. Siñeriz (1996) Purification and characterization of an extracellular esterase from Bacillus subtilis MIR-16. Biotechnol. Appl. Biochem. 24: 7-11.
  26. Na, K. S., A. Kuroda, N. Takiguchi, T. Ikeda, H. Ohtake, and J. Kato (2005) Isolation and characterization of benzene-tolerant Rhodococcus opaccus strains. J. Biosc. Bioeng. 99: 378-382. https://doi.org/10.1263/jbb.99.378
  27. Nielsen, L. E., D. R. Kadavy, S. Rajagopal, R. Drijber, and K. W. Nickerson (2005) Survey of extreme solvent tolerance in Gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl. Environ. Microbiol. 71: 5171-5176. https://doi.org/10.1128/AEM.71.9.5171-5176.2005
  28. Zahir, Z., K. D. Seed, and J. J. Dennis (2006) Isolation and characterization of novel organic solventtolerant bacteria. Extremophiles 10:129-138. https://doi.org/10.1007/s00792-005-0483-y
  29. Hasan, F., A. A. Shah, and A. Abul-Hameed (2006) Influence of culture conditions on lipase production by Bacillus sp. FH5. Ann. Microbiol. 56: 247-252. https://doi.org/10.1007/BF03175013
  30. Lee, S. H. and D. H. Park (2008) An alkaliphilic bacterium isolation and physiological characterization of Bacillus clausii SKAL-16 isolated from wastewater. J. Microbiol. Biotechnol. 18: 1908-1914.
  31. Choi, H. J., M. J. Hwang, Y. K. Jeong, and W. H. Joo (2011) Evaluation of the Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5005. J. Life Sci. 21: 700-705. https://doi.org/10.5352/JLS.2011.21.5.700
  32. Kanjanavas, P., S. Khuchareontaworn, P. Khawsak, A. Pakpitcharoen, K. Pothivejkul, S. Santiwatanakul, K. Matsui. T. Kajiwara, and K. Chansiri (2010) Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int. J. Mol. Sci. 11: 3783-3792. https://doi.org/10.3390/ijms11103783
  33. Shaoxin, C., Q. Lilia, and S. Bingzhao (2007) Purification and properties of enantioselective lipase from a newly isolated Bacillus cereus C71. Process Biochem. 42: 988-994. https://doi.org/10.1016/j.procbio.2007.03.010
  34. Sugihara, A., T. Tani, and Y. Tominaga (1991) Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109: 211-216.
  35. Chen, S. J., C. Y. Cheng, and T. L. Chen (1998) Production of an alkaline lipase by Acinetobacter radioresistens. J. Ferment Bioeng. 86: 308-312. https://doi.org/10.1016/S0922-338X(98)80135-9
  36. Lee, D. W., Y. S. Koh, K. J. Kim, B. C. Kim, H. J. Choi, and D. S. Kim (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393-400. https://doi.org/10.1111/j.1574-6968.1999.tb08754.x

피인용 문헌

  1. Solvent Tolerant Bacteria and Their Potential Use vol.25, pp.12, 2015, https://doi.org/10.5352/JLS.2015.25.12.1458