DOI QR코드

DOI QR Code

Enzymatic Characterization of Salmonella typhimurium Mannitol Dehydrogenase Expressed in Escherichia coli

Salmonella typhimurium에서 유래한 Mannitol Dehydrogenase 유전자의 대장균 내 발현 및 효소특성 규명

  • Jang, Myoung-Uoon (Department of Food Science and Technology, Chungbuk National University) ;
  • Park, Jung-Mi (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Min-Jeong (Department of Food Science and Technology, Chungbuk National University) ;
  • Kang, Jung-Hyun (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, So-Won (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Chungbuk National University)
  • Received : 2012.06.05
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

A mannitol dehydrogenase (StMDH) gene was cloned from Salmonella typhimurium LT2 (KCTC 2421) and overexpressed in Escherichia coli. It has a 1,467 bp open reading frame encoding 488 amino acids with deduced molecular mass of 54 kDa, which shares approximately 36% of amino acid identity with known long-chain dehydrogenase/reductatse (LDR) family enzymes. The recombinant StMDH showed the highest activity at $30^{\circ}C$, and pH 5.0 and 10.0 for D-fructose reduction and D-mannitol oxidation, respectively. On the contrary, it has no activity on glucose, galactose, xylose, and arabinose. StMDH can catalyze the oxidative/reductive reactions between D-fructose and D-mannitol only in the presence of $NAD^+$/NADH as coenzymes. These results indicate that StMDH is a typical $NAD^+$/NADH-dependent mannitol dehydrogenase (E.C. 1.1.1.67).

Salmonella typhimurium LT2 (KCTC 2421)로부터 mannitol dehydrogenase (StMDH)로 추정되는 유전자를 클로닝하고, 대장균에서 대량 발현하였다. 이 유전자는 488개의 아미노산 서열(약 54 kDa)을 암호화하는 1,467 bp의 염기로 구성되며, 이미 보고된 long-chain dehydrogenase/ reductase (LDR) 계열 효소들과 약 36%의 아미노산 서열 상동성을 나타내었다. 재조합 StMDH의 최적 반응온도는 $30^{\circ}C$이며, pH 5.0의 조건에서 최대의 D-fructose 환원활성, 그리고 pH 10.0에서 최대의 D-mannitol 산화활성을 보인다. 반면에 glucose, galactose, xylose, arabinose 등의 기질에 대해서는 활성을 보이지 않았다. 이 효소는 $NAD^+$/NADH 존재 하에서만 산화 환원 활성을 가지며, $NADP^+$/NADPH는 조효소로 이용하지 못하였다. 결론적으로 StMDH는 전형적인 $NAD^+$/NADH 의존형의 mannitol dehydrogenase (EC 1.1.1.67)임을 확인하였다.

Keywords

References

  1. Berkowitz, D. 1971. D-Mannitol utilization in Salmonella typhimurium. J. Bacteriol. 105, 232-240.
  2. Carvalheiro, F., Moniz, P., Duarte, L., Esteves, M., and Gírio, F. 2011. Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J. Ind. Microbiol. Biotechnol. 38, 221-227. https://doi.org/10.1007/s10295-010-0823-5
  3. Ceccaroli, P., Saltarelli, R., Guescini, M., Polidori, E., Buffalini, M., Menotta, M., Pierleoni, R., Barbieri, E., and Stocchi, V. 2007. Identific ation and characterization of the Tuber borchii D-mannitol dehydrogenase which defines a new subfamily within the polyol-specific medium chain dehydrogenases. Fungal Genet. Biol. 44, 965-978. https://doi.org/10.1016/j.fgb.2007.01.002
  4. Clark, A., Blissett, K., and Oliver, R. 2003. Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta. Planta 216, 614-619.
  5. Delhaes, L., Frealle, E., and Pinel, C. 2010. Serum markers for allergic bronchopulmonary aspergillosis in cystic fibrosis: State of the art and further challenges. Med. Mycol. 48, S77-S87. https://doi.org/10.3109/13693786.2010.514301
  6. Fields, P.I., Swanson, R.V., Haidaris, C.G., and Heffron, F. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA 83, 5189-5193. https://doi.org/10.1073/pnas.83.14.5189
  7. Horer, S., Stoop, J., Mooibroek, H., Baumann, U., and Sassoon, J. 2001. The crystallographic structure of the mannitol 2-dehydrogenase $NADP^{+}$ binary complex from Agaricus bisporus. J. Biol. Chem. 276, 27555-27561. https://doi.org/10.1074/jbc.M102850200
  8. Kaup, B., Bringer-Meyer, S., and Sahm, H. 2005. D-Mannitol formation from D-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 69, 397-403. https://doi.org/10.1007/s00253-005-1996-0
  9. Kavanagh, K.L., Klimacek, M., Nidetzky, B., and Wilson, D.K. 2002. Crystal structure of Pseudomonas fluorescens mannitol 2- dehydrogenase binary and ternary complexes. J. Biol. Chem. 277, 43433-43442. https://doi.org/10.1074/jbc.M206914200
  10. Kets, E.P., Galinski, E.A., de Wit, M., de Bont, J.A., and Heipieper, H.J. 1996. Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J. Bacteriol. 178, 6665-6670. https://doi.org/10.1128/jb.178.23.6665-6670.1996
  11. Krahulec, S., Armao, G.C., Klimacek, M., and Nidetzky, B. 2011. Enzymes of mannitol metabolism in the human pathogenic fungus Aspergillus fumigatus-kinetic properties of mannitol-1-phosphate 5-dehydrogenase and mannitol 2-dehydrogenase, and their physiological implications. FEBS J. 278, 1264-1276. https://doi.org/10.1111/j.1742-4658.2011.08047.x
  12. Lewis, D.H. and Smith, D.C. 1967. Sugar alcohol (polyols) in fungi green plants. New Phytol. 66, 143-184. https://doi.org/10.1111/j.1469-8137.1967.tb05997.x
  13. Nuss, D., Goettig, P., Magler, I., Denk, U., Breitenbach, M., Schneider, P.B., Brandstetter, H., and Simon-Nobbe, B. 2010. Crystal structure of the NADP-dependent mannitol dehydrogenase from Cladosporium herbarum: Implications for oligomerisation and catalysis. Biochimie 92, 985-993. https://doi.org/10.1016/j.biochi.2010.04.012
  14. Park, D.H. and Zeikus, J.G. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348-355. https://doi.org/10.1002/bit.10501
  15. Perfect, J.R., Rude, T.H., Wong, B., Flynn, T., Chaturvedi, V., and Niehaus, W. 1996. Identification of a Cryptococcus neoformans gene that directs expression of the cryptic Saccharomyces cerevisiae mannitol dehydrogenase gene. J. Bacteriol. 178, 5257-5262. https://doi.org/10.1128/jb.178.17.5257-5262.1996
  16. Sasaki, Y., Laivenieks, M., and Zeikus, J.G. 2005. Lactobacillus reuteri ATCC 53608 mdh gene cloning and recombinant mannitol dehydrogenase characterization. Appl. Microbiol. Biotechnol. 68, 36-41. https://doi.org/10.1007/s00253-004-1841-x
  17. Schneider, K.H., Giffhorn, F., and Kaplan, S. 1993. Cloning, nucleotide sequence and characterization of the mannitol dehydrogenase gene from Rhodobacter sphaeroides. J. Gen. Microbiol. 139, 2475-2484. https://doi.org/10.1099/00221287-139-10-2475
  18. Simon-Nobbe, B., Denk, U., Schneider, P.B., Radauer, C., Teige, M., Crameri, R., Hawranek, T., Lang, R., Richter, K., Schmid- Grendelmeier, P., and et al. 2006. NADP-dependent mannitol dehydrogenase, a major allergen of Cladosporium herbarum. J. Biol. Chem. 281, 16354-16360. https://doi.org/10.1074/jbc.M513638200
  19. Slatner, M., Nagl, G., Haltrich, D., Kulbe, K.D., and Nidetzky, B. 1998. Enzymatic synthesis of mannitol: reaction engineering for a recombinant mannitol dehydrogenase. Ann. N. Y. Acad. Sci. 864, 450-453. https://doi.org/10.1111/j.1749-6632.1998.tb10357.x
  20. Slatner, M., Nidetzky, B., and Kulbe, K.D. 1999. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens. Biochemistry 38, 10489-10498. https://doi.org/10.1021/bi990327g
  21. Smirnoff, N. and Cumbes, Q.J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057-1060. https://doi.org/10.1016/0031-9422(89)80182-7
  22. Stoop, J. and Pharr, D.M. 1994. Mannitol metabolism in celery stressed by excess macronutrients. Plant Physiol. 106, 503-511. https://doi.org/10.1104/pp.106.2.503
  23. Wang, Y.M. and Eys, J. 1981. Nutritional significance of fructose and sugar alcohols. Annu. Rev. Nutr. 1, 437-475. https://doi.org/10.1146/annurev.nu.01.070181.002253
  24. Wisnlak, J. and Simon, R. 1979. Hydrogenation of glucose, fructose, and their mixtures. Ind. Eng. Chem. Prod. Res. Dev. 18, 50-57. https://doi.org/10.1021/i360069a011
  25. Wisselink, H.W., Weusthuis, R.A., Eggink, G., Hugenholtz, J., and Grobben, G.J. 2002. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12, 151-161. https://doi.org/10.1016/S0958-6946(01)00153-4