DOI QR코드

DOI QR Code

Site-directed Mutagenesis Analysis Elucidates the Role of 223/227 Arginine in 23S rRNA Methylation, Which Is in 'Target Adenine Binding Loop' Region of ErmSF

위치 지정 치환 변이를 이용한 ErmSF의 '타깃 Adenine Binding Loop'을 형성하는 부위에 존재하는 223/227 Arginine 잔기의 23S rRNA Methylation 활성에서의 역할 규명

  • Jin, Hyung-Jong (Department of Bioscience and Biotechnology, College of Natural Science, The University of Suwon)
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Received : 2012.04.12
  • Accepted : 2012.05.09
  • Published : 2012.06.30

Abstract

ErmSF is one of the Erm family proteins which catalyze S-adenosyl-$_L$-methionine dependent modification of a specific adenine residue (A2058, E. coli numbering) in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B ($MLS_B$) antibiotics. $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) sequence appears to be a consensus sequence among the Erm family. This sequence was supposed to be involved in direct interaction with the target adenine from the structural studies of Erm protein ErmC'. But in DNA methyltarnsferase M. Taq I, this interaction have been identified biochemically and from the complex structure with substrate. Arginine 223 and 227 in this sequence are not conserved among Erm proteins, but because of the basic nature of residues, it was expected to interact with RNA substrates. Two amino acid residues were replaced with Ala by site-directed mutagenesis. Two mutant proteins still maintained its activity in vivo and resistant to the antibiotic erythromycin. Compared to the wild-type ErmSF, R223A and R227A proteins retained about 50% and 88% of activity in vitro, respectively. Even though those arginine residues are not essential in the catalytic step, with their positive charge they may play an important role for RNA binding.

ErmSF는 23S rRNA의 A2058 (E. coli numbering)에 methylation을 유발하여 macrolide-lincosamide-streptogramin B ($MLS_B$)계 항생제의 부착을 저해함으로써 항생제 활성을 억제하는 내성인자 단백질인 Erm 단백질들 중의 하나이다. Erm 단백질들 사이에서 공통적으로 나타나는 $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) 서열은 Erm 단백질인 ErmC'와 DNA methyltransferase인 M. Taq I의 구조를 분석한 연구에서 타깃인 adenine과 직접적으로 상호작용하는 부위로 제안되거나 확인되었다. 따라서 이 부분 중 Erm 단백질 사이에서 잘 보존되어있지는 않지만 염기성인 잔기의 특성상 기질인 RNA와 상호작용이 예상되는 223, 227번 arginine을 alanine으로 위치 지정 치환한 변이 단백질을 이용하여 그 잔기의 효소 활성에서의 역할을 확인하였다. 두 변이 단백질은 생체 내에서 그 활성을 여전히 유지하고 있어서 항생제인 erythromycin에 대하여 내성을 나타내었으나 in vitro 상에서는 R223A 또는 R227A가 야생형 ErmSF에 비하여 약 50%, 88%의 활성을 각각 나타내어 효소 활성에서 각 잔기가 결정적이지는 않지만 중요한 역할을 수행하고 있음을 확인하였다.

Keywords

References

  1. Birmingham, V.A., Cox, K.L., Larson, J.L., Fishman, S.E., Hershberger, C.L., and Seno, E.T. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539. https://doi.org/10.1007/BF00331036
  2. Bujnicki, J.M. 1999. Comparison of protein structures reveals monophyletic origin of the AdoMet dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. In Silico Biol. 1, 1-8.
  3. Burd, C.G. and Dreyfuss, G. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615-621. https://doi.org/10.1126/science.8036511
  4. Bussiere, D.E., Muchmore, S.W., Dealwis, C.G., Schluckebier, G., Nienaber, V.L., Edalji, R.P., Walter, K.A., Ladror, U.S., Holzman, T.F., and Abad-Zapatero, C. 1998. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37, 7103-7112. https://doi.org/10.1021/bi973113c
  5. Cocito, C.D., Giambattista, M., Nyssen, E., and Vannuffel. P. 1997. Inhibition of protein synthesis by streptogramins and related antibiotics. J. Antimicrob. Chemother. 39, 7-13. https://doi.org/10.1093/jac/39.suppl_1.7
  6. Draper, D.E. and Reynaldo, L.P. 1999. RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27, 381-388. https://doi.org/10.1093/nar/27.2.381
  7. Fauman, E.B., Blumenthal, R.M., and Cheng, X. 1999. Structure and evolution of AdoMet-dependent MTases. S-Adenosylmethioninedependent Methyltransferases: Structures and Functions, pp. 1-38. In Cheng, X. and Blumenthal, R.M. (eds.), World Scientific Inc., Singapore.
  8. Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J., and Weinhold, E. 2001. Structure of the N6-adenine DNA methyltransferase M.Taq I in complex with DNA and a cofactor analog. Nature Struct. Biol. 8, 121-125. https://doi.org/10.1038/84104
  9. Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., and Agmon, I. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679-688. https://doi.org/10.1016/S0092-8674(01)00546-3
  10. Jin, H.J. 1999. ErmSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLSB(macrolidelincosamide-streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-257.
  11. Jin, H.J. 2001. Domain expression of ErmSF, MLSB(macrolidelincosamide- streptogramin B) antibiotic resistance factor protein. Kor. J. Microbiol. 37, 245-252.
  12. Jin, H.J. 2006. Functional role of peptide segment containing 1-25 amino acids in N-terminal end region of ErmSF. Kor. J. Microbiol. 42, 165-171.
  13. Jin, H.J. 2006. Functional role of peptide segment containing 1-25 amino acids in N-terminal end region of ErmSF. Kor. J. Microbiol. 42, 165-171.
  14. Jin, H.J. and Yang, Y.D. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-159. https://doi.org/10.1006/prep.2002.1621
  15. Kovalic, D., Giannattasio, R.B., Jin, H.J., and Weisblum. B. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF(TlrA) methyltransferase. J. Bacteriol. 176, 6992-6998. https://doi.org/10.1128/jb.176.22.6992-6998.1994
  16. Malone, T., Blumenthal, R.M., and Cheng, X. 1995. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618-632. https://doi.org/10.1006/jmbi.1995.0577
  17. Park, A.K., Kim, H., and Jin, H.J. 2010. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol. Lett. 309, 151-162.
  18. Pues, H., Bleimling, N., Holz, B., Wölcke, J., and Weinhold, E. 1999. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus. Biochemistry 38, 1426-1434. https://doi.org/10.1021/bi9818016
  19. Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J., and Seppala. H. 1999. Nomenclature for macrolide and macrolidelincomycin- streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830.
  20. Roberts, M.C. 2004. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47-62. https://doi.org/10.1385/MB:28:1:47
  21. Schluckebier, G., Zhong, P., Stewart, K.D., Kavanaugh, T.J., and Abad-Zapatero, C. 1999. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J. Mol. Biol. 289, 277-291. https://doi.org/10.1006/jmbi.1999.2788
  22. Seppala, H., Skurnik, M., Soini, H., Roberts, M.C., and Huovinen, P. 1998. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob. Agents Chemother. 42, 257-262. https://doi.org/10.1093/jac/42.2.257
  23. Skinner, R., Cundliffe, E., and Schmidt, F.J. 1983. Site for action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706.
  24. Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
  25. Vester, B. and Douthwaite, S. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J. Bacteriol. 176, 6999-7004. https://doi.org/10.1128/jb.176.22.6999-7004.1994
  26. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585. https://doi.org/10.1128/AAC.39.3.577
  27. Yu, L., Petros, A.M., Schnuchel, A., Zhong, P., Severin, J.M., Walter, K., Holzman, T.F., and Fesik, S.W. 1997. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolidelincosamide- streptogramin antibiotic resistance. Nature Struct. Biol. 4, 483-489. https://doi.org/10.1038/nsb0697-483
  28. Zalacain, M. and Cundliffe, E. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260.