DOI QR코드

DOI QR Code

Construction and Preliminary Immunobiological Characterization of a Novel, Non-Reverting, Intranasal Live Attenuated Whooping Cough Vaccine Candidate

  • Cornford-Nairns, R. (Department of Biological and Physical Sciences, University of Southern Queensland) ;
  • Daggard, G. (Department of Biological and Physical Sciences, University of Southern Queensland) ;
  • Mukkur, T. (Department of Biological and Physical Sciences, University of Southern Queensland)
  • Received : 2011.08.03
  • Accepted : 2012.01.31
  • Published : 2012.06.28

Abstract

We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin-12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cell-mediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.

Keywords

References

  1. Andrews, R., A. Herceg, and C. Roberts. 1997. Pertussis notifications in Australia, 1991 to 1997. Commun. Dis. Intell. 21: 145-148.
  2. Canthaboo, C., L. Williams, D. K. Xing, and M. J. Corbel. 2000. Investigation of cellular and humoral immune responses to whole cell and acellular pertussis vaccines. Vaccine 19: 637-643. https://doi.org/10.1016/S0264-410X(00)00253-X
  3. Cohen, S. M. and M. W. Wheeler. 1946. Pertussis vaccine prepared with phase-I cultures grown in fluid medium. Am. J. Pub. Health 36: 371-376. https://doi.org/10.2105/AJPH.36.4.371
  4. Conway, M. A., L. Madrigal-Estebas, S. McClean, D. J. Brayden, and K. H. Mills. 2001. Protection against Bordetella pertussis infection following parenteral or oral immunisation with antigens entrapped in biodegradable particles: Effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19: 1940-1950. https://doi.org/10.1016/S0264-410X(00)00433-3
  5. Cornford, R. A. 1998. Characterisation of the aroD and/or aroQ gene of Bordetella pertussis. BSc. Hons. Thesis, University of Southern Queensland, Toowoomba, Queensland, Australia.
  6. Cornford, R. A. 2003. A novel, genetically engineered intranasal whooping cough vaccine. PhD Thesis, University of Southern Queensland, Toowoomba, Queensland, Australia.
  7. de Melker, H. E., M. A. Conyn-van Spaendonck, H. C. Rumke, J. K. van Wijngaarden, F. R. Mooi, and J. F. P. Schellekens. 1997. Pertussis in The Netherlands: An outbreak despite high levels of immunization with whole-cell vaccine. Emerg. Infect. Dis. 3: 175-178. https://doi.org/10.3201/eid0302.970211
  8. Elahi, S., J. Holmstro, and V. Gerdts. 2007. The benefits of using diverse animal models for studying pertussis. Trends Microbiol. 15: 462-468. https://doi.org/10.1016/j.tim.2007.09.003
  9. Ermens, A. A. M., A. J. M. Bayens, A. C. M. van Gemert, and J. L. P. van Duijnhoven. 1997. Simple dot-blot method evaluated for detection of antibodies against extractable nuclear antigens. Clin. Chem. 43: 2420-2422.
  10. Frohlich, B. T., E. R. De Bernardez Clark, G. R. Siber, and R. W. Swartz. 1995. Improved pertussis toxin production by Bordetella pertussis through adjusting the growth medium's ionic composition. J. Biotech. 39: 205-219. https://doi.org/10.1016/0168-1656(95)00013-G
  11. Fry, S. R., A. Y. Chen, G. Daggard, and T. K. Mukkur. 2008. Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J. Med. Microbiol. 57: 28-35. https://doi.org/10.1099/jmm.0.47527-0
  12. Gold, M. S., S. Noonan, M. Osbourn, S. Precepa, and A. E. Kempe. 2003. Local reactions at the fourth dose of acellular pertussis vaccine in South Australia. Med. J. Aust. 179: 191-194.
  13. Hoiseth, S. K. and B. A. D. Stocker. 1981. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 291: 238-239. https://doi.org/10.1038/291238a0
  14. He, Q. and J. Mertsola. 2008. Factors contributing to pertussis resurgence. Future Microbiol. 3: 329-339. https://doi.org/10.2217/17460913.3.3.329
  15. Kolos, V., R. Menzies, and P. McIntyre. 2007. Higher pertussis hospitalization rates in indigenous Australian infants, and delayed vaccination. Vaccine 25: 588-590. https://doi.org/10.1016/j.vaccine.2006.08.022
  16. Lalonde, G., P. D. O'Hanley, B. A. D. Stocker, and K. T. Denich. 1994. Characterisation of a 3-dehydroquinase gene from Actinobacillus pleuropneumoniae with homology to the eukaryotic genes qa-2 and QUTE. Mol. Microbiol. 11: 273-280. https://doi.org/10.1111/j.1365-2958.1994.tb00307.x
  17. Leef, M., K. L. Elkin, J. Barbic, and R. D. Shahin. 2000. Protective immunity to Bordetella pertussis requires both B cells and CD4+ T cells for key functions other than specific antibody production. J. Exp. Med. 191: 1841-1852. https://doi.org/10.1084/jem.191.11.1841
  18. Locht, C., R. Antoine, D. Raze, N. Mielcarek, D. Hot, Y. Lemoine, and Mascart F. 2004. Bordetella pertussis: From functional genomics to intranasal vaccination. Int. J. Med. Microbiol. 293: 583-588. https://doi.org/10.1078/1438-4221-00288
  19. Mahon, B. P., M. T. Brady, and K. H. Mills. 2000. Protection against Bordetella pertussis in mice in the absence of detectable circulating antibody: Implications for long-term immunity in children. J. Infect. Dis. 181: 2087-2091. https://doi.org/10.1086/315527
  20. Marshall, H. S., M. S. Gold, R. Gent, P. J. Quinn, L. Piotto, M. F. Clarke, and D. M. Roberton. 2006. Ultrasound examination of extensive limb swelling reactions after diphtheria-tetanus-acellular pertussis or reduced-antigen content diphtheria-tetanus-acellular pertussis immunization in preschool-aged children. Pediatrics 118: 1501-1509. https://doi.org/10.1542/peds.2005-2890
  21. Marzouqi, I., P. Richmond, S. Fry, J. Wetherall, and T. Mukkur. 2010. Development of improved vaccines against whooping cough: Current status. Hum. Vaccin. 6: 1-11. https://doi.org/10.4161/hv.6.1.10702
  22. Mielcarek, N., G. Riveau, F. Remoue, R. Antoine, A. Capron, and C. Locht. 1998. Homologous and heterologous protection after single intranasal administration of live attenuated recombinant Bordetella pertussis. Nat. Biotechnol. 16: 454-457. https://doi.org/10.1038/nbt0598-454
  23. Mielcarek, N., A.-S. Debrie, D. Raze, J. Bertout, C. Rouanet, A. B. Younes, et al. 2006. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. PLOS Pathog. 2: e65. https://doi.org/10.1371/journal.ppat.0020065
  24. Mills, K. H. G. 2001. Immunity to Bordetella pertussis. Microbes Infect. 3: 655-677. https://doi.org/10.1016/S1286-4579(01)01421-6
  25. Mooi, F., I. H. Van Loo, M. van Gent, Q. He, M. J. Bart, K. J. Heuvelman, et al. 2009. Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg. Infect. Dis. 15: 1206-1213. https://doi.org/10.3201/eid1508.081511
  26. Morbidity and Mortality Weekly Report. 2011. General Recommendations on Immunization. Recommendations of the Advisory Committee on Immunization Practices (ACIP) Recommendations and Reports. Vol. 60, No. 2.
  27. Mukkur, T. K., G. H. McDowell, B. A. D. Stocker, and A. K. Lascelles. 1987. Protection against experimental salmonellosis in mice and sheep by immunisation with aromatic-dependent Salmonella Typhimurium. J. Med. Microbiol. 24: 11-19. https://doi.org/10.1099/00222615-24-1-11
  28. Nasso, M., G. Fedele, F. Spencieri, R. Palazzo, P. Costantino, R. Rappuoli, et al. 2011. Genetically detoxified pertussis induces Th1/Th17 immune response through MAPKs and IL-10-dependent mechanisms. J. Immunol. 183: 1892-1899.
  29. National Notifiable Diseases Surveillance System. 2011. Available at http://www9.health.gov.au/cda/Source/Rpt_3.cfm, accessed 4/3/2011.
  30. Olson, L. C. 1975. Pertussis. Medicine (Baltimore) 54: 427-469. https://doi.org/10.1097/00005792-197511000-00001
  31. Parkhill, J., M. Sebaihia, A. Preston, L. D. Murphy, N. Thomson, D. E. Harris, et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35: 32-40. https://doi.org/10.1038/ng1227
  32. Pertussis [whooping cough]: Outbreaks. http://www.cdc.gov/pertussis/outbreaks.html. Accessed 14 June 2011.
  33. Quinn, P., M. Gold, J. Royle, J. Buttery, J. P. Richmond, P. McIntyre, et al. 2011. Recurrence of extensive injection site reactions following DTPa or dTpa vaccine in children 406 years old. Vaccine 29: 4230-4237. https://doi.org/10.1016/j.vaccine.2011.03.088
  34. Rennels, M. B., M. A. Deloria, M. E. Pichichero, G. A. Losonsky, J. A. Englund, B. D. Meade, et al. 2000. Extensive swelling after booster doses of acellular pertussis-tetanus-diphtheria vaccines. Pediatrics 1: e1-e12.
  35. Roberts, M., D. Maskell, P. Novotny, and G. Dougan. 1990. Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect. Immun. 58: 732-739.
  36. Rowe, J., S. T. Yerkovich, P. Richmond, D. Suriyaarachchi, E. Fisher, L. Feddema, et al. 2005. Th2-associated local reactions to the acellular diphtheria-tetanus-pertussis vaccine in 4- to 6-yearold children. Infect. Immun. 73: 8130-8135. https://doi.org/10.1128/IAI.73.12.8130-8135.2005
  37. Rossetti, T. R. 1997. Cloning the aroD gene of Bordetella pertussis. BSc. Hons. Thesis, University of Southern Queensland, Toowoomba, Queensland, Australia.
  38. Sambrook, J., E. F. Fritsch, and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  39. Schellekens, J., C. H. von Konig, and P. Gardner. 2005. Pertussis sources of infection and routes of transmission in the vaccination era. Pediatr. Infect. Dis. J. 24: 721-728. https://doi.org/10.1097/01.inf.0000172905.08606.a3
  40. Shahin, R., M. Leef, J. Eldridge, M. Hudson, and R. Gilley. 1995. Adjuvanticity and protective immunity elicited by Bordetella pertussis antigens encapsulated in poly[DL-lactide-co-glycolide] microspheres. Infect. Immun. 63: 1195-1200.
  41. Stainer, D. W. and M. J. Scholte. 1971. A simple and chemically defined medium for the production of phase I Bordetella pertussis. J. Gen. Microbiol. 34: 778-784.
  42. Towbin, H., T. Stachelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  43. Verma, N. K. and A. A. Lindberg. 1991. Construction of aromatic dependent Shigella flexneri 2a live vaccine candidate strains: Deletion mutations in the aroA and the aroD genes. Vaccine 9: 6-9. https://doi.org/10.1016/0264-410X(91)90308-S
  44. Wearing, H. J. and P. Rohani. 2009. Estimating the duration of pertussis immunity using epidemiological signatures. PLoS Pathog. 5: e1000647. https://doi.org/10.1371/journal.ppat.1000647
  45. Weiss, A. A. and E. L. Hewlett. 1986. Virulence factors of Bordetella pertussis. Annu. Rev. Microbiol. 40: 661-686. https://doi.org/10.1146/annurev.mi.40.100186.003305
  46. Wendelboe, A. M., E. Njamkepo, A. Bourillon, D. D. Floret, J. Gaudelus, M. Gerber, et al. 2007. Infant Pertussis Study Group. Transmission of Bordetella pertussis to young infants. Pediatr. Infect. Dis. J. 26: 293-299. https://doi.org/10.1097/01.inf.0000258699.64164.6d
  47. Rieber, N., A. Graf, D. Hartl, S. Urschel, B. H. Belohradsky, and J. Liese. 2011. Acellular pertussis booster in adolescents induces Th1 and memory CD8+ T cell immune response. PLoS ONE 6: e17271. https://doi.org/10.1371/journal.pone.0017271

Cited by

  1. Pertussis re-emergence in the post-vaccination era vol.13, pp.None, 2012, https://doi.org/10.1186/1471-2334-13-151
  2. Live attenuated vaccines against pertussis vol.13, pp.9, 2012, https://doi.org/10.1586/14760584.2014.942222
  3. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance vol.207, pp.1, 2018, https://doi.org/10.1007/s00430-017-0524-z
  4. The Role of Mucosal Immunity in Pertussis vol.9, pp.None, 2012, https://doi.org/10.3389/fimmu.2018.03068
  5. Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.701285
  6. The Path to New Pediatric Vaccines against Pertussis vol.9, pp.3, 2012, https://doi.org/10.3390/vaccines9030228