DOI QR코드

DOI QR Code

Isolation and Functional Analysis of spy1 Responsible for Pristinamycin Yield in Streptomyces pristinaespiralis

  • Jin, Qingchao (School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University) ;
  • Yin, Huali (School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University) ;
  • Hong, Xiaowei (School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University) ;
  • Jin, Zhihua (School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University)
  • Received : 2011.11.11
  • Accepted : 2012.02.06
  • Published : 2012.06.28

Abstract

A gene related to high pristinamycin yield in Streptomyces pristinaespiralis was selected by amplified fragment length polymorphism (AFLP) and its functions were investigated by gene disruption. First, a 561 bp polymorphic sequence was acquired by AFLP from high-yield recombinants compared with the S. pristinaespiralis ancestor ATCC25486, indicating that this approach is an effective means of screening for valuable genes responsible for antibiotic yield. Then, a 2,127 bp open reading frame of a gene designated spy1 that overlaps with the above fragment was identified and its structure and biological functions were investigated. In silico analysis of spy1 encoding a deduced 708-amino-acid-long serine/threonine protein kinase showed that it only contains a catalytic domain in the N-terminal region, which is different from some known homologs. Gene inactivation of chromosomal spy1 indicated that it plays a pleiotropic regulatory function in pristinamycin production, with a positive correlation to pristinamycin I biosynthesis and a negative correlation to pristinamycin II biosynthesis.

Keywords

References

  1. Abdel-Hamid, M. E. and O. A. Phillips. 2003. LC-MS/MS determination of Synercid injections. J. Pharm. Biomed. Anal. 32: 1167-1174. https://doi.org/10.1016/S0731-7085(03)00231-0
  2. Bamas-Jacques, N., S. Lorenzon, P. Lacroix, C. De Swetschin, and J. Crouzet. 1999. Cluster organization of the genes of Streptomyces pristinaespiralis involved in pristinamycin biosynthesis and resistance elucidated by pulsed-field gel electrophoresis. J. Appl. Microbiol. 87: 939-948. https://doi.org/10.1046/j.1365-2672.1999.00955.x
  3. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  4. Cocito, C. 1979. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol. Rev. 43: 145-192.
  5. Folcher, M., H. Gaillard, L. T. Nguyen, K. T. Nguyen, P. Lacroix, N. Bamas-Jacques, et al. 2001. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276: 44297-44306. https://doi.org/10.1074/jbc.M101109200
  6. Hong, X., Z. Jin, Q. Jin, X. Zheng, K. Huang, and L. Mei. 2009. Cloning of spy1, a novel homolog of afsk gene. Chinese J. Biochem. Mol. Biol. 25: 1124-1130.
  7. Jia, B., Z. H. Jin, Y. L. Lei, L. H. Mei, and N. H. Li. 2006. Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol. Lett. 28: 1811-1815. https://doi.org/10.1007/s10529-006-9157-9
  8. Jin, Q., Z. Jin, B. Xu, Q. Wang, Y. Lei, S. Yao, and P. Cen. 2008. Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. Biotechnol. Lett. 30: 1423-1429. https://doi.org/10.1007/s10529-008-9701-x
  9. Jin, Z., X. Jin, and Q. Jin. 2010. Conjugal transferring of resistance gene ptr for improvement of pristinamycin-producing Streptomyces pristinaespiralis. Appl. Biochem. Biotechnol. 160: 1853-1864. https://doi.org/10.1007/s12010-009-8691-z
  10. Kieser, T., M. J. Bibb, M. J. Buttner, K. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich.
  11. Martin, J. F. and P. Liras. 2010. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr. Opin. Microbiol. 13: 263-273. https://doi.org/10.1016/j.mib.2010.02.008
  12. Mast, Y., T. Weber, M. Golz, R. Ort-Winklbauer, A. Gondran, W. Wohlleben, and E. Schinko. 2011. Characterization of the 'pristinamycin supercluster' of Streptomyces pristinaespiralis. Microb. Biotechnol. 4: 192-206. https://doi.org/10.1111/j.1751-7915.2010.00213.x
  13. Matsumoto, A., S. K. Hong, H. Ishizuka, S. Horinouchi, and T. Beppu. 1994. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotictype protein kinase. Gene 146: 47-56. https://doi.org/10.1016/0378-1119(94)90832-X
  14. Rajkarnikar, A., H. J. Kwon, Y. W. Ryu, and J. W. Suh. 2006. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr. Microbiol. 53: 204-208. https://doi.org/10.1007/s00284-006-0062-1
  15. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  16. Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292.
  17. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, et al. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. https://doi.org/10.1093/nar/23.21.4407
  18. Xu, B., Z. Jin, H. Wang, Q. Jin, X. Jin, and P. Cen. 2008. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl. Microbiol. Biotechnol. 80: 261-267. https://doi.org/10.1007/s00253-008-1540-0

Cited by

  1. Probing the Molecular Mechanisms for Pristinamycin Yield Enhancement in Streptomyces pristinaespiralis vol.65, pp.6, 2012, https://doi.org/10.1007/s00284-012-0233-1
  2. Streptogramins - Two are better than one! vol.304, pp.1, 2012, https://doi.org/10.1016/j.ijmm.2013.08.008
  3. Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis vol.197, pp.12, 2012, https://doi.org/10.1128/jb.00045-15
  4. Identification of two novel regulatory genes involved in pristinamycin biosynthesis and elucidation of the mechanism for AtrA-p-mediated regulation in Streptomyces pristinaespiralis vol.99, pp.17, 2015, https://doi.org/10.1007/s00253-015-6638-6
  5. A Complex Signaling Cascade Governs Pristinamycin Biosynthesis in Streptomyces pristinaespiralis vol.81, pp.19, 2012, https://doi.org/10.1128/aem.00728-15
  6. Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches vol.2, pp.2, 2017, https://doi.org/10.1016/j.synbio.2017.06.001