References
- Ahmadvand, D., M. J. Rasaee, F. Rahbarizadeh, R. E. Kontermann, and F. Sheikholislami. 2009. Cell selection and characterization of a novel human endothelial cell specific nanobody. Mol. Immunol. 46: 1814-1823. https://doi.org/10.1016/j.molimm.2009.01.021
- Chen, X. S., R. L. Garcea, I. Goldberg, G. Casini, and S. C. Harrison. 2000. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell. 5: 557-567. https://doi.org/10.1016/S1097-2765(00)80449-9
- Christensen, N. D., J. W. Kreider, N. M. Cladel, S. D. Patrick, and P. A. Welsh. 1990. Monoclonal antibody-mediated neutralization of infectious human papillomavirus type 11. J. Virol. 64: 5678- 5681.
- Christensen, N. D., C. A. Reed, N. M. Cladel, K. Hall, and G. S. Leiserowitz. 1996. Monoclonal antibodies to HPV-6 L1 virus-like particles identify conformational and linear neutralizing epitopes on HPV-11 in addition to type-specific epitopes on HPV-6. Virology 224: 477-486. https://doi.org/10.1006/viro.1996.0554
- Culp, T. D. and N. D. Christensen. 2003. Quantitative RT-PCR assay for HPV infection in cultured cells. J. Virol. Methods 111: 135-144. https://doi.org/10.1016/S0166-0934(03)00170-8
- Culp, T. D., C. M. Spatz, C. A. Reed, and N. D. Christensen. 2007. Binding and neutralization efficiencies of monoclonal antibodies, Fab fragments, and scFv specific for L1 epitopes on the capsid of infectious HPV particles. Virology 361: 435-446. https://doi.org/10.1016/j.virol.2006.12.002
- Day, P. M., C. D. Thompson, C. B. Buck, Y. Y. Pang, D. R. Lowy, and J. T. Schiller. 2007. Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J. Virol. 81: 8784-8792. https://doi.org/10.1128/JVI.00552-07
- Ganguly, N. and S. P. Parihar. 2009. Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J. Biosci. 34: 113-123. https://doi.org/10.1007/s12038-009-0013-7
- Hamers-Casterman, C., T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers, E. B. Songa, et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363: 446-448. https://doi.org/10.1038/363446a0
- Harrison, J. L., S. C. Williams, G. Winter, and A. Nissim. 1996. Screening of phage antibody libraries. Methods Enzymol. 267: 83-109.
- Holliger, P. and P. J. Hudson. 2005. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23: 1126-1136. https://doi.org/10.1038/nbt1142
- Kemp, T. J., A. Hildesheim, M. Safaeian, J. G. Dauner, Y. Pan, C. Porras, et al. 2011. HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine 29: 2011-2014. https://doi.org/10.1016/j.vaccine.2011.01.001
- Kirnbauer, R., F. Booy, N. Cheng, D. R. Lowy, and J. T. Schiller. 1992. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 89: 12180-12184. https://doi.org/10.1073/pnas.89.24.12180
- Kirnbauer, R., J. Taub, H. Greenstone, R. Roden, M. Durst, L. Gissmann, et al. 1993. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J. Virol. 67: 6929-6936.
- Klasse, P. J. and Q. J. Sattentau. 2001. Mechanisms of virus neutralization by antibody. Curr. Top. Microbiol. Immunol. 260: 87-108.
- Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Lin, K., K. Doolan, C. F. Hung, and T. C. Wu. 2010. Perspectives for preventive and therapeutic HPV vaccines. J. Formos. Med. Assoc. 109: 4-24. https://doi.org/10.1016/S0929-6646(10)60017-4
- Ludmerer, S. W., W. L. McClements, X. M. Wang, J. C. Ling, K. U. Jansen, and N. D. Christensen. 2000. HPV11 mutant virus-like particles elicit immune responses that neutralize virus and delineate a novel neutralizing domain. Virology 266: 237-245. https://doi.org/10.1006/viro.1999.0083
- Modis, Y., B. L. Trus, and S. C. Harrison. 2002. Atomic model of the papillomavirus capsid. EMBO J. 21: 4754-4762. https://doi.org/10.1093/emboj/cdf494
- Motoyama, S., C. A. Ladines-Llave, S. Luis Villanueva, and T. Maruo. 2004. The role of human papilloma virus in the molecular biology of cervical carcinogenesis. Kobe J. Med. Sci. 50: 9-19.
- Muyldermans, S. 2001. Single domain camel antibodies: Current status. J. Biotechnol. 74: 277-302.
- Parkin, D. M., M. Almonte, L. Bruni, G. Clifford, M. P. Curado, and M. Pineros. 2008. Burden and trends of type-specific human papillomavirus infections and related diseases in the Latin America and Caribbean region. Vaccine 26 (Suppl 11): L1-15.
- Parkin, D. M., F. Bray, J. Ferlay, and P. Pisani. 2005. Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108.
- Pastrana, D. V., C. B. Buck, Y. Y. Pang, C. D. Thompson, P. E. Castle, P. C. FitzGerald, et al. 2004. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321: 205-216. https://doi.org/10.1016/j.virol.2003.12.027
- Pathirana, D., P. Hillemanns, K. U. Petry, N. Becker, N. H. Brockmeyer, R. Erdmann, et al. 2009. Short version of the German evidence-based guidelines for prophylactic vaccination against HPV-associated neoplasia. Vaccine 27: 4551-4559. https://doi.org/10.1016/j.vaccine.2009.03.086
- Pomfret, T. C., J. M. Gagnon Jr., and A. T. Gilchrist. 2011. Quadrivalent human papillomavirus (HPV) vaccine: A review of safety, efficacy, and pharmacoeconomics. J. Clin. Pharm. Ther. 36: 1-9. https://doi.org/10.1111/j.1365-2710.2009.01150.x
- Rahbarizadeh, F., D. Ahmadvand, and Z. Sharifzadeh. 2011. Nanobody; an old concept and new vehicle for immunotargeting. Immunol. Invest. 40: 299-338. https://doi.org/10.3109/08820139.2010.542228
- Rahbarizadeh, F., M. J. Rasaee, M. Forouzandeh-Moghadam, and A. A. Allameh. 2005. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr. Purif. 44: 32-38. https://doi.org/10.1016/j.pep.2005.04.008
- Rahbarizadeh, F., M. J. Rasaee, M. Forouzandeh, and A. A. Allameh. 2006. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol. Immunol. 43: 426-435. https://doi.org/10.1016/j.molimm.2005.03.003
- Rahbarizadeh, F., M. J. Rasaee, M. Forouzandeh Moghadam, A. A. Allameh, and E. Sadroddiny. 2004. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid. Hybridomics 23: 151-159. https://doi.org/10.1089/1536859041224334
- Rose, R. C., W. Bonnez, R. C. Reichman, and R. L. Garcea. 1993. Expression of human papillomavirus type 11 L1 protein in insect cells: In vivo and in vitro assembly of viruslike particles. J. Virol. 67: 1936-1944.
- Sawaya, G. F. 2009. Cervical-cancer screening - new guidelines and the balance between benefits and harms. N. Engl. J. Med. 361: 2503-2505. https://doi.org/10.1056/NEJMp0911380
- Virgin, H. W., M. A. Mann, and K. L. Tyler. 1994. Protective antibodies inhibit reovirus internalization and uncoating by intracellular proteases. J. Virol. 68: 6719-6729.
- White, W. I., S. D. Wilson, W. Bonnez, R. C. Rose, S. Koenig, and J. A. Suzich. 1998. In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16. J. Virol. 72: 959-964.
- Yang, T., L. Yang, W. Chai, R. Li, J. Xie, and B. Niu. 2011. A strategy for high-level expression of a single-chain variable fragment against TNFalpha by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr. Purif. 76: 109-114. https://doi.org/10.1016/j.pep.2010.10.006
- Zhuge, W., F. Jia, G. Mackay, A. Kumar, and O. Narayan. 2001. Antibodies that neutralize SIV(mac)251 in T lymphocytes cause interruption of the viral life cycle in macrophages by preventing nuclear import of viral DNA. Virology 287: 436-445. https://doi.org/10.1006/viro.2001.1053
Cited by
- Single Domain Antibodies as New Biomarker Detectors vol.7, pp.4, 2017, https://doi.org/10.3390/diagnostics7040052
- From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00017
- Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein vol.20, pp.9, 2012, https://doi.org/10.3390/ijms20092088
- Nanobodies in Human Infections: Prevention, Detection, and Treatment vol.49, pp.8, 2020, https://doi.org/10.1080/08820139.2019.1688828
- Immunodiagnosis and Immunotherapeutics Based on Human Papillomavirus for HPV-Induced Cancers vol.11, pp.None, 2012, https://doi.org/10.3389/fimmu.2020.586796