참고문헌
- Arnold, F. H., P. L. Wintrode, K. Miyazaki, and A. Gershenson. 2001. How enzymes adapt: Lessons from directed evolution. Trends Biochem. Sci. 26: 100-106. https://doi.org/10.1016/S0968-0004(00)01755-2
- Beckman, R. A., A. S. Mildvan, and L. A. Loeb. 1985. On the fidelity of DNA replication: Manganese mutagenesis in vitro. Biochem. 24: 5810-5817. https://doi.org/10.1021/bi00342a019
- Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3: 39-109. https://doi.org/10.1080/02648725.1985.10647809
- Coughlan, M. P. and L. G. Ljungdahl. 1988. Comparative biochemistry of fungal and bacterial cellulolytic systems, pp. 11-30. In J. P. Aubert, P. Beguin, and J. Millet (eds.). Biochemistry and Genetics for Cellulose Degradation. Academic Press, London & San Diego.
- Dean, F. B., J. R. Nelson, T. L. Giesler, and R. S. Lasken. 2001. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11: 1095-1099. https://doi.org/10.1101/gr.180501
- Devega, M., J. M. Lazaro, and M. Salas. 2000. Phage Phi29 DNA polymerase residues involved in the proper stabilisation of the primer terminus at the 3'-5' exonuclease active site. J. Mol. Biol. 304: 1-9. https://doi.org/10.1006/jmbi.2000.4178
- Ding, X., A. K. Snyder, R. Shaw, W. G. Farmerie, and W. Y. Song. 2003. Direct retransformation of yeast with plasmid DNA isolated from single yeast colonies using rolling circle amplification. BioTechniques 35: 774-779.
- Fujii, R., M. Kitaoka, and K. Hayashi. 2004. One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res. 32: e145. https://doi.org/10.1093/nar/gnh147
- Greener, A., M. Callahan, and B. Jerpseth. 1996. In M. K. Trower (ed.). In Vitro Mutagenesis Protocols. Humana Press, New Jersey.
- Kornberg, A. and T. Baker. 1992. DNA Replication. Freeman WH & Company, New York.
- Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488-492. https://doi.org/10.1073/pnas.82.2.488
- Lee, Y. J., B. K. Kim, B. H. Lee, K. I. Jo, N. K. Lee, C. H. Chung, et al. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour. Technol. 99: 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
- Leung, D. W., E. Chen, and D. W. Goeddel. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Techniques 1: 11-15.
- Liu, D. Y., S. L. Daubendiek, M. A. Zillman, K. Ryan, and E. T. Kool. 1996. Rolling circle DNA synthesis: Small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118: 1587-1594. https://doi.org/10.1021/ja952786k
- Lizardi, P. M., X. Huang, Z. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward. 1998. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 19: 225-232. https://doi.org/10.1038/898
- Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 3: 426-428.
- Ohmiya, K., K. Sakka, S. Karita, and T. Kimura. 1997. Structure of cellulases and their applications. Biotechnol. Gen. Eng. Rev. 14: 365-414. https://doi.org/10.1080/02648725.1997.10647949
- Wang, T., X. Liu, Q. Yu, X. Zhang, Y. Qu, and P. Gao. 2005. Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol. Eng. 22: 89-94. https://doi.org/10.1016/j.bioeng.2004.10.003
- Zhang, Y. H. P., M. E. Himmel, and J. R. Mielenz. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
피인용 문헌
- Neue Entwicklungen im Bereich Cellulase‐Engineering vol.85, pp.6, 2012, https://doi.org/10.1002/cite.201200190
- Directed co-evolution of an endoglucanase and a β-glucosidase in Escherichia coli by a novel high-throughput screening method vol.49, pp.65, 2012, https://doi.org/10.1039/c3cc42485e
- Current Developments in Cellulase Engineering vol.1, pp.1, 2012, https://doi.org/10.1002/cben.201300006
- Enzymatischer Abbau von (Ligno)Cellulose vol.126, pp.41, 2014, https://doi.org/10.1002/ange.201309953
- Enzymatic Degradation of (Ligno)cellulose vol.53, pp.41, 2012, https://doi.org/10.1002/anie.201309953
- Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization vol.16, pp.1, 2012, https://doi.org/10.1002/elsc.201400196
- Development of simple random mutagenesis protocol for the protein expression system in Pichia pastoris vol.9, pp.None, 2012, https://doi.org/10.1186/s13068-016-0613-z
- Rational engineering of Cel5E from Clostridium thermocellum to improve its thermal stability and catalytic activity vol.102, pp.19, 2012, https://doi.org/10.1007/s00253-018-9204-1