DOI QR코드

DOI QR Code

Identification of Chinese Cabbage Sentrin as a Suppressor of Bax-Induced Cell Death in Yeast

  • Sawitri, Widhi Dyah (School of Applied Ecological Resources, College of Ecology and Environmental Science, Kyungpook National University) ;
  • Slameto, Slameto (Department of Agronomy, Faculty of Agriculture, Jember University) ;
  • Sugiharto, Bambang (Department of Biology, Faculty of Mathematics and Science) ;
  • Kim, Kyung-Min (School of Applied Ecological Resources, College of Ecology and Environmental Science, Kyungpook National University)
  • Received : 2011.09.16
  • Accepted : 2011.12.30
  • Published : 2012.05.28

Abstract

Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier-1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-$Leu^-$-$Ura^-$ medium. The results suggest that BrSE ($\underline{B}$rassica rapa $\underline{S}$entrin $\underline{E}$ST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.

Keywords

References

  1. Angadi, S. V., H. W. Cutforth, P. R. Miller, B. G. McConkey, M. H. Entz, S. A. Brandt, and K. M. Volkmar. 2000. Response of three Brassica species to high temperature stress during reproductive growth. Can. J. Plant Sci. 80: 693-701. https://doi.org/10.4141/P99-152
  2. Chen, S. R., D. D. Dunigan, and M. B. Dickman. 2003. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae. Free Radic. Biol. Med. 34: 1315-1325. https://doi.org/10.1016/S0891-5849(03)00146-1
  3. Eswaran, N., S. Parameswaran, B. Sathram, B. Anantharaman, G. P. K. Kumar, and S. J. Tangirala. 2010. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol. 10: 23. https://doi.org/10.1186/1472-6750-10-23
  4. Hanania, U., N. F. Matarasso, M. Ron, and A. Avni. 1999. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19: 533-541. https://doi.org/10.1046/j.1365-313X.1999.00547.x
  5. Isbat, M., N. Zeba, S. R. Kim, and C. B. Hong. 2009. A Bax inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transgenic tobacco. J. Plant Physiol. 166: 1685-1693. https://doi.org/10.1016/j.jplph.2009.04.017
  6. Jin, C. and J. C. Reed. 2002. Yeast and apoptosis. Nature Rev. 3: 453-459. https://doi.org/10.1038/nrm832
  7. Kawai, M., L. Pan, J. C. Reed, and H. Uchimiya. 1999. Evolutionally conserved plant homologue of the Bax Inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464: 143-147. https://doi.org/10.1016/S0014-5793(99)01695-6
  8. Kim, K. M., Y. S. Lim, I. W. Sul, A. Hirata, M. K. Yamada, and H. Uchimiya. 2006. Analysis of the Arabidopsis thaliana cell growth defect factor 2 (Cdf) suppressing yeast cell proliferation. Korean J. Genet. 28: 201-206.
  9. Kim, S. E., J. M. Lee, C. W. Lee, and N. K. Paek. 1998. Effects of difenoconazole on the growth of the plug grown Chinese cabbage seedlings for summer cultivation. Kor. J. Hort. Sci. Technol. 16: 416.
  10. Lee, S. C., M. H. Lim, S. I. Lee, J. S. Kim, M. Jin, S. J. Kwon, et al. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K Oligo. Mol. Cells 26: 595-605.
  11. Pan, L., M. Kawai, L. H. Yu, K. M. Kim, A. Hirata, M. Umeda, and H. Uchimiya. 2001. The Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) can function as a dominant suppressor of Bax-induced cell death of yeast. FEBS. J. 508: 375-378. https://doi.org/10.1016/S0014-5793(01)03098-8
  12. Schwartz, S. M. 1998. Cell death and the caspase cascade. Cir. J. Am. Heart Assoc. 97: 227-229.
  13. Shaham, S., M. A. Shuman, and I. Herskowitz. 1998. Death-defying yeast identify novel apoptosis genes. Cell 92: 425-427. https://doi.org/10.1016/S0092-8674(00)80934-4
  14. Singh, M. V. and P. A. Weil. 2002. A method for plasmid purification directly from yeast. Anal. Biochem. 307: 13-17. https://doi.org/10.1016/S0003-2697(02)00018-0
  15. Umeda, M., R. P. Bhalerao, J. Schell, H. Uchimiya, and C. Koncz. 1998. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95: 5021-5026. https://doi.org/10.1073/pnas.95.9.5021
  16. Wahid, A., G. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plant: An overview. Environ. Exp. Bot. 61: 199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  17. Watanabe, N. and E. Lam. 2006. Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J. 45: 884-894. https://doi.org/10.1111/j.1365-313X.2006.02654.x
  18. Xu, Q. and J. C. Reed. 1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1: 337-346. https://doi.org/10.1016/S1097-2765(00)80034-9
  19. Yamada, M. K., Y. Saito, L. Jin, T. Ogawa, K. M. Kim, L. H. Yu, et al. 2005. Novel Arabidopsis gene causes Bax-like lethaly in Saccharomyces cerevisiae. J. Biol. Chem. 47: 39468-39473.
  20. Yang, K. A., C. J. Lim, J. K. Hong, C. Y. Park, Y. H. Cheong, W. S. Chung, et al. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171: 175-182. https://doi.org/10.1016/j.plantsci.2006.03.013