References
- Abe, K., H. Hayashi, and P. C. Maloney. 1996. Exchange of aspartate and alanine. Mechanism for development of a protonmotive force in bacteria. J. Biol. Chem. 271: 3079-3084. https://doi.org/10.1074/jbc.271.6.3079
- Allerberger, F. and M. Wagner. 2010. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 16: 16-23. https://doi.org/10.1111/j.1469-0691.2009.03109.x
- Autret, N., I. Dubail, P. Trieu-Cuot, P. Berche, and A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69: 2054-2065. https://doi.org/10.1128/IAI.69.4.2054-2065.2001
- Bakker, H. C., X. Didelot, E. D. Fortes, K. K. Nightingale, and M. Wiedmann. 2008. Lineage specific rates and microevolution in Listeria monocytogenes. BMC Evol. Biol. 8: 277. https://doi.org/10.1186/1471-2148-8-277
- Begley, M., P. D. Cotter, C. Hill, and R. P. Ross. 2010. Glutamate decarboxylase-mediated nisin resistance in Listeria monocytogenes. Appl. Environ. Microbiol. 76: 6541-6546. https://doi.org/10.1128/AEM.00203-10
- Bierne, H., C. Sabet, N. Personnic, and P. Cossart. 2007. Internalins: A complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect. 9: 1156-1166. https://doi.org/10.1016/j.micinf.2007.05.003
- Bille, J., D. S. Blanc, H. Schmid, K. Boubaker, A. Baumgartner, H. H. Siegrist, et al. 2006. Outbreak of human listeriosis associated with Tomme cheese in northwest Switzerland, 2005. Euro. Surveill. 11: 91-93.
- Bonnet, M., M. M. Rafi, M. L. Chikindas, and T. J. Montville. 2006. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Appl. Environ. Microbiol. 72: 2556-2563. https://doi.org/10.1128/AEM.72.4.2556-2563.2006
- Chen, J., X. Zhang, L. Mei, L. Jiang, and W. Fang. 2009. Prevalence of Listeria in Chinese food products from 13 provinces between 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates. Foodborne Pathog. Dis. 6: 7-14. https://doi.org/10.1089/fpd.2008.0139
- Chen, J., L. Jiang, Q. Chen, H. Zhao, X. Luo, X. Chen, and W. Fang. 2009. lmo0038 is involved in acid and heat stress responses and specific for L. monocytogenes lineages I and II, and L. ivanovii. Foodborne Pathog. Dis. 6: 365-376. https://doi.org/10.1089/fpd.2008.0207
- Chen, J., X. Luo, L. Jiang, P. Jin, W. Wei, D. Liu, and W. Fang. 2009. Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems. Food Microbiol. 26: 103-111. https://doi.org/10.1016/j.fm.2008.08.003
- Chen, J., L. Jiang, X. Chen, X. Luo, Y. Chen, Y. Yu, et al. 2009. Listeria monocytogenes serovar 4a is a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua. J. Microbiol. Biotechnol. 19: 238-249.
- Chen, J., Q. Chen, L. Jiang, C. Cheng, F. Bai, J. Wang, et al. 2010. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiol. 10: 97. https://doi.org/10.1186/1471-2180-10-97
- Chen, J., Q. Chen, J. Jiang, H. Hu, J. Ye, and W. Fang. 2010. Serovar 4b complex predominates among Listeria monocytogenes isolates from imported aquatic products in China. Foodborne Pathog. Dis. 7: 31-41. https://doi.org/10.1089/fpd.2009.0353
- Chen, J., C. Cheng, Y. Xia, H. Zhao, C. Fang, Y. Shan, et al. 2011. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 157: 3150-3161. https://doi.org/10.1099/mic.0.049619-0
- Chen, J., C. Fang, T. Zheng, N. Zhu, Y. Bei, and W. Fang. 2012. Genomic presence of GadD1 glutamate decarboxylase correlates with the organization of ascB-dapE internalin cluster in Listeria monocytogenes. Foodborne Pathog. Dis. 9: 175-178. https://doi.org/10.1089/fpd.2011.1022
- Clark, C. G., J. Farber, F. Pagotto, N. Ciampa, K. Doré, C. Nadon, et al. 2010. Surveillance for Listeria monocytogenes and listeriosis, 1995-2004. Epidemiol. Infect. 138: 559-572. https://doi.org/10.1017/S0950268809990914
- Cotter, P. D., C. G. Gahan, and C. Hill. 2001. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40: 465-475. https://doi.org/10.1046/j.1365-2958.2001.02398.x
- Cotter, P. D., S. Ryan, C. G. Gahan, and C. Hill. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ. Microbiol. 71: 2832-2839. https://doi.org/10.1128/AEM.71.6.2832-2839.2005
- Dawson, S. J., M. R. Evans, D. Willby, J. Bardwell, N. Chamberlain, and D. A. Lewis. 2006. Listeria outbreak associated with sandwich consumption from a hospital retail shop, United Kingdom. Euro. Surveill. 11: 89-91.
- Didelot, X. and D. Falush. 2007. Inference of bacterial microevolution using multilocus sequence data. Genetics 175: 1251-1266.
- Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072-1083. https://doi.org/10.1128/IAI.72.2.1072-1083.2004
- Fretz, R., J. Pichler, U. Sagel, P. Much, W. Ruppitsch, A. T. Pietzka, et al. 2010. Update: Multinational listeriosis outbreak due to 'Quargel', a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009-2010. Euro. Surveill 15: 19543.
- Gilmour, M. W., M. Graham, G. V. Domselaar, S. Tyler, H. Kent, K. M. Trout-Yakel, et al. 2010. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11: 120. https://doi.org/10.1186/1471-2164-11-120
- Gray, M. J., R. N. Zadoks, E. D. Fortes, B. Dogan, S. Cai, Y. Chen, et al. 2004. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl. Environ. Microbiol. 70: 5833-5841. https://doi.org/10.1128/AEM.70.10.5833-5841.2004
- Guttman, D. S. and D. E. Dykhuizen. 1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266: 1380-1383. https://doi.org/10.1126/science.7973728
- Higuchi, T., H. Hayashi, and K. Abe. 1997. Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Appl. Environ. Microbiol. 179: 3362-3364.
- Jacquet, C., M. Doumith, J. I. Gordon, P. M. Martin, P. Cossart, and M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect. Dis. 189: 2094-2100. https://doi.org/10.1086/420853
- Kathariou, S. 2002. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65: 1811-1829.
- Kirchner, M. and D. E. Higgins. 2008. Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes. Mol. Microbiol. 68: 749-767. https://doi.org/10.1111/j.1365-2958.2008.06188.x
- Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55: 181-186. https://doi.org/10.1016/S0168-1605(00)00161-6
- Liu, D. 2006. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J. Med. Microbiol. 55: 645-659. https://doi.org/10.1099/jmm.0.46495-0
- Liu, D., M. L. Lawrence, M. Wiedmann, L. Gorski, R. E. Mandrell, A. J. Ainsworth, and F. K. Austin. 2006. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J. Clin. Microbiol. 44: 4229-4233. https://doi.org/10.1128/JCM.01032-06
- Milkman, R. and M. Bridges. 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126: 505-517.
- Milillo, S. R. and M. Wiedmann. 2009. Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes. Foodborne Pathog. Dis. 6: 57-70. https://doi.org/10.1089/fpd.2008.0140
- Molenaar, D., J. S. Bosscher, B. ten Brink, A. J. Driessen, and W. N. Konings. 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175: 8264-2870.
- Nielsen, R. 2001. Statistical tests of selective neutrality in the age of genomics. Heredity 86: 641-647. https://doi.org/10.1046/j.1365-2540.2001.00895.x
- Nightingale, K., K. Windham, and M. Wiedmann. 2005. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J. Bacteriol. 187: 5537-5551. https://doi.org/10.1128/JB.187.16.5537-5551.2005
- Orsi, R. H., H. C. den Bakker, and M. Wiedmann. 2010. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 301: 79-96.
- Parihar, V. S., G. Lopez-Valladares, M. L. Danielsson-Tham, I. Peiris, S. Helmersson, M. Unemo, et al. 2008. Characterization of human invasive isolates of Listeria monocytogenes in Sweden, 1986-2007. Foodborne Pathog. Dis. 5: 755-761. https://doi.org/10.1089/fpd.2008.0123
- Perez-Losada, M., E. B. Browne, A. Madsen, T. Wirth, R. P. Viscidi, and K. A. Crandall. 2006. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 6: 97-112. https://doi.org/10.1016/j.meegid.2005.02.003
- Ragon, M., T. Wirth, F. Hollandt, R. Lavenir, M. Lecuit, A. L. Monnier, and S. Brisse. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4: 1-14.
- Ross, A. I., M. W. Griffiths, G. S. Mittal, and H. C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89: 125-138. https://doi.org/10.1016/S0168-1605(03)00161-2
- Rozas, J., J. Sunchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. https://doi.org/10.1093/bioinformatics/btg359
- Simonsen, K., G. Churchill, and C. Aquadro. 1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413-429.
- Swaminathan, B. and P. Gerner-Smidt. 2007. The epidemiology of human listeriosis. Microbes Infect. 9: 1236-1243. https://doi.org/10.1016/j.micinf.2007.05.011
- Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Urwin, R. and M. C. J. Maiden. 2003. Multi-locus sequence typing: A tool for global epidemiology. Trends Microbiol. 11: 479-487. https://doi.org/10.1016/j.tim.2003.08.006
- van Stelten, A. and K. K. Nightingale. 2008. Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene inlA. Appl. Environ. Microbiol. 74: 7365-7375. https://doi.org/10.1128/AEM.01138-08
- van Stelten, A., J. M. Simpson, T. J. Ward, and K. K. Nightingale. 2010. Revelation by single-nucleotide polymorphism genotyping that mutations leading to a premature stop codon in inlA are common among Listeria monocytogenes isolates from ready-to-eat foods but not human listeriosis cases. Appl. Environ. Microbiol. 76: 2783-2790. https://doi.org/10.1128/AEM.02651-09
- Ward, T. J., T. F. Ducey, T. Usgaard, K. A. Dunn, and J. P. Bielawski. 2008. Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl. Environ. Microbiol. 74: 7629-7642. https://doi.org/10.1128/AEM.01127-08
- Ward, T. J., P. Evans, M. Wiedmann, T. Usgaard, S. E. Roof, S. G. Stroika, and K. Hise. 2010. Molecular and phenotypic characterization of Listeria monocytogenes from U.S. Department of Agriculture Food Safety and Inspection Service surveillance of ready-to-eat foods and processing facilities. J. Food Prot. 73: 861-869.
- Wiedmann, M., J. L. Bruce, C. Keatine, A. E. Johnson, P. L. McDonough, and C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65: 2707-2716.
- Wirth, T., D. Falush, R. Lan, F. Colles, P. Mensa, L. Wieler, et al. 2006. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 60: 1136-1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x
- Zhang, W., B. M. Jayarao, and S. J. Knabel. 2004. Multi-virulence-locus sequence typing of Listeria monocytogenes. Appl. Environ. Microbiol. 70: 913-920. https://doi.org/10.1128/AEM.70.2.913-920.2004
Cited by
- Molecular Approaches to the Identification of Pathogenic and Nonpathogenic Listeriae vol.6, pp.None, 2012, https://doi.org/10.4137/mbi.s10880
- The Effects of Heat Shock on the D-Values of <i>Listeria monocytogenes</i> on Selected Seafood Matrices vol.5, pp.8, 2012, https://doi.org/10.4236/aim.2015.58060
- Genomic insights into persistence of Listeria species in the food processing environment vol.131, pp.5, 2012, https://doi.org/10.1111/jam.15089