References
- Albini, S., I. Brodard, A. Jaussi, N. Wollschlaeger, J. Frey, R. Miserez, and C. Abril, 2008. Real-time multiplex PCR assays for reliable detection of Clostridium perfringens toxin genes in animal isolates. Vet. Microbiol. 127: 179-185. https://doi.org/10.1016/j.vetmic.2007.07.024
- Brynestad, S. and P. E. Granum. 2002. Clostridium perfringens and food borne infections. Int. J. Food Microbiol. 74: 195-202. https://doi.org/10.1016/S0168-1605(01)00680-8
- Cai, T., L. Jiang, C. Yang, and K. Huang. 2006. Application of real-time PCR for quantitative detection of Vibrio parahaemolyticus from seafood in eastern China. FEMS Immunol. Med. Microbiol. 46: 180-186. https://doi.org/10.1111/j.1574-695X.2005.00016.x
- Chon, J. H., J. Y. Hyeon, I. G. Hwang, H. S. Kwak, J. A. Han, Y. H. Chung, et al. 2010. Comparison of standard culture method and real-time PCR for detection of Vibrio parahaemolyticus in seafoods and vegetables. Korean J. Food Sci. Technol. 42: 355-360.
- Erol, I., M. Goncuoglu, N. D. Ayaz, F. S. Bilir-Ormanci, and G. Hildebrandt. 2008. Molecular typing of Clostridium perfringens isolated from turkey meat by multiplex PCR. Lett. Appl. Microbiol. 47: 31-34. https://doi.org/10.1111/j.1472-765X.2008.02379.x
- Fukushima, H., K. Katsube, Y. Hata, R. Kishi, and S. Fujiwara. 2007. Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl. Environ. Microbiol. 73: 92-100. https://doi.org/10.1128/AEM.01772-06
- Gurjar, A. A., N. V. Hegde, B. C. Love, and B. M. Jayarao. 2008. Real-time multiplex PCR assay for rapid detection and toxintyping of Clostridium perfringens toxin producing strains in feces of dairy cattle. Mol. Cell. Probes 22: 90-95. https://doi.org/10.1016/j.mcp.2007.08.001
- Hyeon, J. Y., I. G. Hwang, H. S. Kawk, J. S. Park, S. Heo, I. S. Choi, et al. 2009. Evaluation of an automated ELISA and real-time PCR by comparing with a conventional culture method for the detection of Salmonella spp. in steamed pork and raw broccoli sprouts. Korean J. Food Sci. Anim. Resour. 29: 506-512. https://doi.org/10.5851/kosfa.2009.29.4.506
- Jung, S. H., M. J. Hur, J. H. Ju, K. A. Kim, S. S. Oh, J. M. Go, et al. 2006. Microbiological evaluation of raw vegetables. J. Food Hyg. Safety 21: 250-257.
- Lantz, P. G., R. Knutsson, Y. Blixt, W. A. Al-Soud, E. Borch, and P. Radstrom. 1998. Detection of pathogenic Yersinia enterocolitica in enrichment media and pork by a multiplex PCR, a study of sample preparation and PCR-inhibitory components. Int. J. Food Microbiol. 45: 93-105. https://doi.org/10.1016/S0168-1605(98)00152-4
- Lee, J. H., K. Y. Song, J. Y. Hyeon, I. G. Hwang, H. S. Kwak, J. A. Han, et al. 2010. Comparison of standard culture method and real-time PCR assay for detection of Staphylococcus aureus in processed and unprocessed foods. Korean J. Food Sci. Anim. Resour. 30: 410-418. https://doi.org/10.5851/kosfa.2010.30.3.410
- Malorny, B., E. Paccassoni, P. Fach, C. Bunge, A. Martin, and R. Helmuth, 2004. Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 70: 7046-7052. https://doi.org/10.1128/AEM.70.12.7046-7052.2004
- Petit, L., M. Gibert, and M. R. Popoff. 1999. Clostridium perfringens: Toxinotype and genotype. Trends Microbiol. 7: 104-110. https://doi.org/10.1016/S0966-842X(98)01430-9
- Sartory, D. P., M. Field, S. M. Curbishley, and A. M. Pritchard. 1998. Evaluation of two media for the membrane filtration enumeration of Clostridium perfringens from water. Lett. Appl. Microbiol. 27: 323-327. https://doi.org/10.1046/j.1472-765X.1998.00454.x
- Seo, K. H. and R. E. Brackett. 2005 Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. J. Food Prot. 68: 59-63. https://doi.org/10.4315/0362-028X-68.1.59
- Wu, S. B., N. Rodgers, and M. Choct. 2011. Real-time PCR assay for Clostridium perfringens in broiler chickens in a challenge model of necrotic enteritis. Appl. Environ. Microbiol. 77: 1135-1139. https://doi.org/10.1128/AEM.01803-10
Cited by
- Rapid, Sensitive, and Specific Detection of Clostridium tetani by Loop-Mediated Isothermal Amplification Assay vol.23, pp.1, 2012, https://doi.org/10.4014/jmb.1205.05063
- 유제품과 육제품에서 황색포도상구균 신속검출을 위한 PCR법의 비교검증 vol.45, pp.6, 2012, https://doi.org/10.9721/kjfst.2013.45.6.791
- Molecular Epidemiology ofClostridium perfringensIsolated from Food Poisoning in Seoul, 2013 vol.44, pp.2, 2014, https://doi.org/10.4167/jbv.2014.44.2.170
- Comparison of Culture, Conventional and Real-time PCR Methods for Listeria monocytogenes in Foods vol.34, pp.5, 2014, https://doi.org/10.5851/kosfa.2014.34.5.665
- Sensitive quantification of Clostridium perfringens in human feces by quantitative real-time PCR targeting alpha-toxin and enterotoxin genes vol.15, pp.None, 2012, https://doi.org/10.1186/s12866-015-0561-y
- Rapid Detection of Lactobacillus kefiranofaciens in Kefir Grain and Kefir Milk Using Newly Developed Real-Time PCR vol.78, pp.4, 2012, https://doi.org/10.4315/0362-028x.jfp-14-329
- Prevalence and toxin type of Clostridium perfringens in beef from four different types of meat markets in Seoul, Korea vol.26, pp.2, 2012, https://doi.org/10.1007/s10068-017-0075-5
- Prevalence, toxin gene profile, antibiotic resistance, and molecular characterization of Clostridium perfringens from diarrheic and non-diarrheic dogs in Korea vol.19, pp.3, 2018, https://doi.org/10.4142/jvs.2018.19.3.368
- Detection of pathogenic microorganisms from bloodstream infection specimens using TaqMan array card technology vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-31200-3
- Large-Scale Genomic Analyses and Toxinotyping of Clostridium perfringens Implicated in Foodborne Outbreaks in France vol.10, pp.None, 2012, https://doi.org/10.3389/fmicb.2019.00777
- Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions vol.9, pp.8, 2012, https://doi.org/10.3390/ani9080510
- In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR vol.15, pp.4, 2020, https://doi.org/10.1371/journal.pone.0226863
- Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies vol.13, pp.4, 2012, https://doi.org/10.3390/toxins13040266
- A novel in situ methodology for visual detection of Clostridium perfringens in pork harnessing saltatory rolling circle amplification vol.69, pp.None, 2012, https://doi.org/10.1016/j.anaerobe.2021.102324
- Clostridium Perfringens Toxin Types Associated with Meat: Review in Iran vol.15, pp.4, 2012, https://doi.org/10.30699/ijmm.15.4.384