DOI QR코드

DOI QR Code

Comparison of Alpha-Factor Preprosequence and a Classical Mammalian Signal Peptide for Secretion of Recombinant Xylanase xynB from Yeast Pichia pastoris

  • He, Zuyong (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Huang, Yuankai (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Qin, Yufeng (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Liu, Zhiguo (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Mo, Delin (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Cong, Peiqing (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Chen, Yaosheng (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University)
  • Received : 2011.09.15
  • Accepted : 2011.12.16
  • Published : 2012.04.28

Abstract

The secretory efficiency of recombinant xylanase xynB from yeast Pichia pastoris between the ${\alpha}$-factor preprosequence and a classical mammalian signal peptide derived from bovine ${\beta}$-casein was compared. The results showed that although the bovine ${\beta}$-casein signal peptide could direct high-level secretion of recombinant xylanase, it was relatively less efficient than the ${\alpha}$-factor preprosequence. In contrast, the bovine ${\beta}$-casein signal peptide caused remarkably more recombinant xylanase trapped intracellularly. Real-time RT-PCR analysis indicated that the difference in the secretory level between the two signal sequences was not due to the difference in the transcriptional efficiency.

Keywords

References

  1. Amberg, D., D. Burke, and J. Strathern. 2005. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, NY.
  2. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  3. Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  4. Clare, J. J., F. B. Rayment, S. P. Ballantine, K. Sreekrishna, and M. A. Romanos. 1991. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (NY) 9: 455-460. https://doi.org/10.1038/nbt0591-455
  5. Cudna, R. E. and A. J. Dickson. 2003. Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol. Bioeng. 81: 56-65. https://doi.org/10.1002/bit.10445
  6. Daly, R. and M. T. W. Hearn. 2005. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineering and production. J. Molec. Recogn. 18: 119-138. https://doi.org/10.1002/jmr.687
  7. Gorodetsky, S. I., T. M. Tkach, and T. V. Kapelinskaya. 1988. Isolation and characterization of the Bos taurus beta-casein gene. Gene 66: 87-96. https://doi.org/10.1016/0378-1119(88)90227-2
  8. Kurjan, J. and I. Herskowitz. 1982. Structure of a yeast pheromone gene (MF alpha): A putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell 30: 933-943. https://doi.org/10.1016/0092-8674(82)90298-7
  9. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-delta delta C) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  10. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  11. Raemaekers, R. J., L. de Muro, J. A. Gatehouse, and A. P. Fordham-Skelton. 1999. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur. J. Biochem. 265: 394-403. https://doi.org/10.1046/j.1432-1327.1999.00749.x
  12. Vassileva, A., D. A. Chugh, S. Swaminathan, and N. Khanna. 2001. Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 21: 71-80. https://doi.org/10.1006/prep.2000.1335
  13. Yu, S., M. Liang, B. Fan, H. Xu, C. Li, Q. Zhang, et al. 2006. Maternally derived recombinant human anti-hantavirus monoclonal antibodies are transferred to mouse offspring during lactation and neutralize virus in vitro. J. Virol. 80: 4183-4186. https://doi.org/10.1128/JVI.80.8.4183-4186.2006
  14. Yu, Z., Q. Meng, H. Yu, B. Fan, S. Yu, J. Fei, et al. 2006. Expression and bioactivity of recombinant human lysozyme in the milk of transgenic mice. J. Dairy Sci. 89: 2911-2918. https://doi.org/10.3168/jds.S0022-0302(06)72563-2
  15. Zhu, T., M. Guo, Z. Tang, M. Zhang, Y. Zhuang, J. Chu, and S. Zhang. 2009. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J. Appl. Microbiol. 107: 954-963. https://doi.org/10.1111/j.1365-2672.2009.04279.x

Cited by

  1. Expression, purification, and lipolytic activity of recombinant human serum albumin fusion proteins with one domain of human growth hormone inPichia pastoris : Fusion Expression of One Domain of Growt vol.60, pp.4, 2012, https://doi.org/10.1002/bab.1108
  2. Introduction of silent mutations in a codon-optimized xylanase (xynB) results in enhanced protein expression in HEK293A cells vol.35, pp.12, 2012, https://doi.org/10.1007/s10529-013-1311-6
  3. Expression, purification and characterization of human interferon-γ in Pichia pastoris vol.9, pp.2, 2012, https://doi.org/10.3892/mmr.2013.1812
  4. A New Signal Sequence for Recombinant Protein Secretion in Pichia pastoris vol.24, pp.3, 2012, https://doi.org/10.4014/jmb.1308.08085
  5. Thermostable multifunctional GH74 xyloglucanase from Myceliophthora thermophila: high-level expression in Pichia pastoris and characterization of the recombinant protein vol.101, pp.14, 2012, https://doi.org/10.1007/s00253-017-8297-2
  6. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications vol.33, pp.1, 2012, https://doi.org/10.1007/s11274-016-2185-2
  7. Integrated Bottom-Up and Top-Down Liquid Chromatography–Mass Spectrometry for Characterization of Recombinant Human Growth Hormone Degradation Products vol.89, pp.23, 2012, https://doi.org/10.1021/acs.analchem.7b03026
  8. Expression of a Recombinant Lentinula edodes Xylanase by Pichia pastoris and Its Effects on Ruminal Fermentation and Microbial Community in in vitro Incubation of Agricultural Straws vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.02944
  9. A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization vol.149, pp.None, 2012, https://doi.org/10.1016/j.pep.2018.03.013
  10. Identification and characterization of N-glycosylation site on a Mucor circinelloides aspartic protease expressed in Pichia pastoris : effect on secretion, activity and thermo-stability vol.8, pp.1, 2012, https://doi.org/10.1186/s13568-018-0691-3
  11. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides vol.18, pp.None, 2012, https://doi.org/10.1186/s12934-019-1222-x