참고문헌
- Afgan, N. H. and M. G. Carvalho. 2004. Sustainability assessment of hydrogen energy systems. Int. J. Hydrogen Energy 29: 1327-1342. https://doi.org/10.1016/j.ijhydene.2004.01.005
- Alalayah, W. M., M. S. Kalil, A. A. H. Kadhum, J. M. Jahim, and N. M. Alauj. 2008. Hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Int. J. Hydrogen Energy 33: 7392-7396. https://doi.org/10.1016/j.ijhydene.2008.09.066
- Clesceri, L. S., A. E. Greenberg, and A. D. Eaton (Eds.) 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC.
- Barbosa, M. J., J. M. S. Rocha, J. Tramper, and R. H. Wifjjels. 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechnol. 85: 25-33. https://doi.org/10.1016/S0168-1656(00)00368-0
- Brosseau, J. D. and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. J. Chem. Technol. Biotechnol. 32: 496-502.
- Chen, C. C., C. Y. Lin, and J. S. Chang. 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 57: 56-64. https://doi.org/10.1007/s002530100747
- Demirel, B., P. Scherer, O. Yenigun, and T. T. Onay. 2010. Production of methane and hydrogen from biomass through conventional and high-rate anaerobic digestion processes. Crit. Rev. Environ. Sci. Technol. 40: 116-146. https://doi.org/10.1080/10643380802013415
- Fang, H. H. P. and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93. https://doi.org/10.1016/S0960-8524(01)00110-9
- Fang, H. H. P., H. Zhu, and T. Zhang. 2006. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J. Hydrogen Energy 31: 2223-2230. https://doi.org/10.1016/j.ijhydene.2006.03.005
- Fascetti, E., E. D'Addario, O. Todini, and A. Robertiello. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int. J. Hydrogen Energy 23: 753-760.
- Jo, J. H., D. S. Lee, D. Park, and J. M. Park. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresour. Technol. 99: 6666-6672. https://doi.org/10.1016/j.biortech.2007.11.067
- Kapdan, I. K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582. https://doi.org/10.1016/j.enzmictec.2005.09.015
- Kraemer, J. T. and D. M. Bagley. 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 29: 685-695. https://doi.org/10.1007/s10529-006-9299-9
- Kim, J. O., Y. H. Kim, J. Y. Ryu, B. K. Song, I. H. Kim, and S. H. Yeom. 2005. Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochem. 40: 1331-1337. https://doi.org/10.1016/j.procbio.2004.06.008
- Manish, S. and R. Banerjee. 2008. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy 33: 279-286. https://doi.org/10.1016/j.ijhydene.2007.07.026
-
Odom, J. M. and J. D. Wall. 1983. Photoproduction of
$H_2$ from cellulose by an anaerobic bacterial coculture. Appl. Environ. Microbiol. 45: 1300-1305. - Shi, X. Y. and H. Q. Yu. 2006. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int. J. Hydrogen Energy 31: 1641-1647. https://doi.org/10.1016/j.ijhydene.2005.12.008
- Taguchi, F., N. Mizukami, T. Saito-Taki, and K. Hasegawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2. Can. J. Microbiol. 41: 536-540. https://doi.org/10.1139/m95-071
- Uyar, B., I. Eroglu, M. Yucel, and U. Gunduz. 2009. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int. J. Hydrogen Energy 34: 4517-4523. https://doi.org/10.1016/j.ijhydene.2008.07.057
- Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum grown under a self-generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26. https://doi.org/10.1007/BF02660113
-
Yokoi, H., S. Mori, J. Hirose, S. Hayashi, and Y. Takasaki. 1998.
$H_2$ production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol. Lett. 20: 895-899. https://doi.org/10.1023/A:1005327912678
피인용 문헌
- Optimization of Hydrogen Production by Co-Culture of Clostridium beijerinckii and Rhodobacter sphaeroides Bacteria vol.93, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/ast.93.90
- Biological hydrogen production using co-culture versus mono-culture system vol.4, pp.1, 2012, https://doi.org/10.1080/21622515.2015.1068381
- Co‐culture strategies for increased biohydrogen production vol.39, pp.11, 2015, https://doi.org/10.1002/er.3364
- Inhibited growth of Clostridium butyricum in efficient H2-producing co-culture with Rhodobacter sphaeroides vol.100, pp.24, 2016, https://doi.org/10.1007/s00253-016-7977-7
- Enhancement of Hydrogen Production through a Mixed Culture of Enterobacter cloacae and Rhodobacter sphaeroides vol.31, pp.7, 2012, https://doi.org/10.1021/acs.energyfuels.7b01173
- Long-term H2 photoproduction from starch by co-culture of Clostridium butyricum and Rhodobacter sphaeroides in a repeated batch process vol.40, pp.2, 2018, https://doi.org/10.1007/s10529-017-2486-z
- Advances and Applications of Clostridium Co-culture Systems in Biotechnology vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.560223
- A newly isolated green alga Chlorella sp. KLSc59: potential for biohydrogen production vol.32, pp.5, 2012, https://doi.org/10.1007/s10811-020-02140-1