DOI QR코드

DOI QR Code

Characterization of Zinc-Solubilizing Bacillus Isolates and their Potential to Influence Zinc Assimilation in Soybean Seeds

  • Sharma, Sushil K. (Directorate of Soybean Research (DSR-ICAR)) ;
  • Sharma, Mahaveer P. (Directorate of Soybean Research (DSR-ICAR)) ;
  • Ramesh, Aketi (Directorate of Soybean Research (DSR-ICAR)) ;
  • Joshi, Om P. (Directorate of Soybean Research (DSR-ICAR))
  • Received : 2011.06.13
  • Accepted : 2011.11.03
  • Published : 2012.03.28

Abstract

One hundred thirty-four putative Bacillus isolates were recovered from soybean rhizosphere soils of Nimar region to select effective zinc solubilizers for increased assimilation of zinc (Zn) in soybean seeds. These isolates were screened in vitro for zinc-solubilization ability on Tris-minimal agar medium supplemented separately with 0.1% zinc in the form of zinc oxide, zinc phosphate, and zinc carbonate. Of all, 9 isolates and a reference Bacillus cereus ATCC 13061 were characterized and identified as Bacillus species based on Gram-positive reaction, endospore-forming cells, and the presence of iso-$C_{15:0}$ and anteiso-$C_{15:0}$ as predominant fatty acids. On plate assay, two isolates KHBD-6 and KHBAR-1 showed a greater diameter of solubilization halo and colony diameter on all the three zinc compounds. The isolates KHBD-6, KHBAR-1, BDSD-2-2C, and KHTH-4-1 and the reference strain ATCC 13061 had higher soluble zinc concentration in liquid medium supplemented with zinc phosphate and zinc carbonate compounds as compared with the other isolates and uninoculated control. Evaluation under microcosm conditions showed that inoculation of isolates KHBD-6 (57.34 ${\mu}g/g$), KHBAR-1 (55.67 ${\mu}g/g$), and strain ATCC 13061 (53.10 ${\mu}g/g$) significantly increased the Zn concentration in soybean seeds as compared with the other isolates and uninoculated control (47.14 ${\mu}g/g$). This study suggests the occurrence of zinc-solubilizing Bacillus in soils of Nimar region and isolates KHBD-6 and KHBAR-1 were found to be promising zinc solubilizers for increased assimilation of Zn in soybean seeds.

Keywords

References

  1. Bhatia, V. S., P. Singh, S. P. Wani, G. S. Chauhan, A. V. R. Kesava Rao, A. K. Mishra, and K. Srinivas. 2008. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agric. Forest Meteorol. 148: 1252-1265. https://doi.org/10.1016/j.agrformet.2008.03.004
  2. Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302: 1-17. https://doi.org/10.1007/s11104-007-9466-3
  3. Chauhan, G. S. and O. P. Joshi. 2005. Soybean (Glycine max) - The 21st century crop. Indian J. Agric. Sci. 75: 461-469.
  4. Di Simine, C. D., J. A. Sayed, and G. M. Gadd. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils 28: 87-94. https://doi.org/10.1007/s003740050467
  5. Fasim, F., N. Ahmed, R. Parsons, and G. M. Gadd. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 213: 1-6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
  6. Franz, A., W. Burgsteller, and F. Schinner. 1991. Leaching with Penicillium simplicissimum: Influence on metals and buffers on proton extrusion and citric acid production. Appl. Environ. Microbiol. 57: 769-774.
  7. Gadd, G. M. 2007. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111: 3-49. https://doi.org/10.1016/j.mycres.2006.12.001
  8. Ghosh, A., M. Bhardwaj, T. Satyanarayana, M. Khurana, S. Mayilraj, and R. K. Jain. 2007. Bacillus lehensis sp. nov., an alkali tolerant bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 238-242. https://doi.org/10.1099/ijs.0.64617-0
  9. Hamdali, H., B. Bouizgarne, M. Hafidi, A. Lebrihi, M. J. Virolle, and Y. Ouhdouch. 2008. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl. Soil Ecol. 38: 12-19. https://doi.org/10.1016/j.apsoil.2007.08.007
  10. Jackson, M. L. 1967. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi.
  11. Koneman, E. W., S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn Jr. 1992. Color Atlas and Textbook of Diagnostic Microbiology, 4th Ed. J. B. Lippincott Company, Philadelphia.
  12. Lim, J. M., C. O. Jeon, J. C. Lee, Y. J. Ju, D. J. Park, and C. J. Kim. 2006. Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. Int. J. Syst. Evol. Microbiol. 56: 59-63. https://doi.org/10.1099/ijs.0.63701-0
  13. Lindsay, W. L. 1979. Chemical Equilibria in Soils. John-Willey and Sons, NewYork.
  14. Mader, P., F. Kiser, A. Adholeya, R. Singh, H. S. Uppal, A. K. Sharma, et al. 2010. Inoculation of root microorganisms for sustainable wheat-rice and wheat-blackgram rotations in India. Soil Biol. Biochem. 43: 609-619.
  15. Madhaiyan, M., V. S. Saravanan, D. B. S. S Jovi, H. S. Lee, R. Thenmozhi, K. Hari, and T. Sa. 2004. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol. Res. 159: 233-243. https://doi.org/10.1016/j.micres.2004.04.001
  16. Prasad, R. 2010. Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr. Sci. 98: 1300-1304.
  17. Ramesh, A., S. K. Sharma, O. P. Joshi, and I. R. Khan. 2011. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian J. Microbiol. 51: 94-99. https://doi.org/10.1007/s12088-011-0104-7
  18. Reddy, G. S. N., A. Uttam, and S. Shivaji. 2008. Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int. J. Syst. Evol. Microbiol. 58: 2330-2335. https://doi.org/10.1099/ijs.0.65515-0
  19. Roesti, D., R. Gaur, B. N. Johri, G. Imfeld, S. Sharma, M. Aragno, and K. Kawaljeet. 2006. Plant growth stage, fertilizer management and bioinoculant of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38: 1111-1120. https://doi.org/10.1016/j.soilbio.2005.09.010
  20. Sachdev, D., P. Nema, P. Dhakephalkar, S. Zinjarde, and B. Chopade. 2010. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 165: 627-638. https://doi.org/10.1016/j.micres.2009.12.002
  21. Sarathambal, C., M. Thangaraju, and M. Gomathy. 2010. Assessing the zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labeled 65Zn compounds. Indian J. Microbiol. 50: 103-109. https://doi.org/10.1007/s12088-010-0066-1
  22. Saravanan, V. S., S. R. Subramaniam, and S. Anthoni Raj. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz. J. Microbiol. 34: 121-125.
  23. Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794-1798. https://doi.org/10.1016/j.chemosphere.2006.07.067
  24. Saravanan, V. S., J. Osborne, M. Madhaiyan, L. Mathew, J. Chung, K. Ahn, and T. Sa. 2007. Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells. J. Microbiol. Biotechnol. 17: 1477-1482.
  25. Sasser, M. 1990. Tracking a strain using the microbial identification system. Technical Note 102, MIS, Newark, DE.
  26. Sasser, M. 2001. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101.
  27. Sasser, M. and M. D. Wichman. 1991. Identification of microorganisms through use of gas chromatography and highperformance liquid chromatography, pp. 111-118. In A. Balows, W. J. Hausler Jr., K. L. Herrman, H. D. Isenberg, and H. J. Shadomy (eds.). Manual of Clinical Microbiology, 5th Ed. American Society for Microbiology, Washington, DC.
  28. Sayer, J. A. and G. M. Gadd. 1998. Solubilization and precipitation of metals by fungi. Minerol. Soc. Bull. pp. 3-5.
  29. Shahab, S. and N. Ahmed. 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. African J. Biotechnol. 7: 1543-1549.
  30. Sharma, S. K., S. Turker, M. P. Sharma and A. Ramesh. 2008. Solubilization of insoluble zinc compounds by Pseudomonas isolates from Vertisols of Malwa region. Presented in 49th Annual Conference, International Symposium on Microbial Biotechnology: Diversity, Genomics and Metagenomics, University of Delhi, Delhi, Nov. 18-20, 2008.
  31. Shivaji, S., P. Chaturvedi, Z. Begum, P. K. Pindi, R. Manorama, D. A. Padmanaban, et al. 2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int. J. Syst. Evol. Microbiol. 59: 2977-2986. https://doi.org/10.1099/ijs.0.002527-0
  32. Singh, B., S. Kumar, A. Natesan, B. K. Singh, and K. Usha. 2005. Improving zinc efficiency of cereals under deficiency. Curr. Sci. 88: 36-44.
  33. Sneath, P. A., N. S. Mair, and M. E. Sharphe. 1986. Bergey's Manual of Systematic Bacteriology, Vol. 2. William and Wilkins.
  34. Takkar, P. N. 1996. Micronutrient research and sustainable agricultural production. J. Indian Soc. Soil Sci. 44: 563-581.
  35. Tariq, M., S. Hameed, K. A. Malik, and F. Y. Hafeez. 2007. Plant root associated bacteria for mobilization in rice. Pak. J. Bot. 39: 245-253.
  36. Thompson, L. U. 1989. Nutritional and physiological effects of phytic acid, pp. 410-431. In J. E. Kinsells and W. G. Soucie (eds.). Food Proteins. American Oil Chemist Society Champaign, IL.
  37. Turker, S. 2007. Exploring zinc-solubilizing Pseudomonas from rhizosphere soils of soybean [Glycine max (L.) Merrill]. M. Sc. Dissertation, Rani Durgavati University, Jabalpur, M.P.
  38. White, C., J. A. Sayer, and G. M. Gadd. 1997. Microbial solubilization and immobilization of toxic metals: Key biochemical processes for treatment of contamination. FEMS Microbiol. Rev. 20: 503-516. https://doi.org/10.1111/j.1574-6976.1997.tb00333.x
  39. World Health Organization. 2002. The World Health Report 2002. Reducing Risks, Promoting Healthy Life. Geneva.

Cited by

  1. Monitoring the Ecology of Bacillus During Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods vol.23, pp.5, 2013, https://doi.org/10.4014/jmb.1211.11065
  2. Plant Growth-Promoting Traits in Enterobacter cloacae subsp. dissolvens MDSR9 Isolated from Soybean Rhizosphere and its Impact on Growth and Nutrition of Soybean and Wheat Upon Inoculation vol.3, pp.1, 2012, https://doi.org/10.1007/s40003-014-0100-3
  3. Ecology of Bacillaceae vol.3, pp.2, 2012, https://doi.org/10.1128/microbiolspec.tbs-0017-2013
  4. Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14 vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.00446
  5. Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn vol.416, pp.1, 2012, https://doi.org/10.1007/s11104-017-3189-x
  6. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02593
  7. Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass vol.27, pp.3, 2017, https://doi.org/10.4014/jmb.1601.01021
  8. Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat vol.37, pp.1, 2012, https://doi.org/10.1007/s00344-017-9716-4
  9. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.) vol.84, pp.1, 2012, https://doi.org/10.1128/aem.01715-17
  10. Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content vol.68, pp.12, 2012, https://doi.org/10.1007/s13213-018-1388-1
  11. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance vol.9, pp.None, 2012, https://doi.org/10.1038/s41598-019-54685-y
  12. Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review vol.40, pp.2, 2012, https://doi.org/10.1007/s13593-020-00619-2
  13. Biodegradation of carbendazim by a potent novel Chryseobacterium sp. JAS14 and plant growth promoting Aeromonas caviae JAS15 with subsequent toxicity analysis vol.10, pp.7, 2012, https://doi.org/10.1007/s13205-020-02319-w
  14. Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.) vol.457, pp.1, 2012, https://doi.org/10.1007/s11104-020-04730-x
  15. Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan From Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.669693
  16. Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol vol.5, pp.None, 2021, https://doi.org/10.3389/fsufs.2021.605195
  17. Cladosporium sp. Isolate as Fungal Plant Growth Promoting Agent vol.11, pp.2, 2021, https://doi.org/10.3390/agronomy11020392
  18. Common Bean Yield and Zinc Use Efficiency in Association with Diazotrophic Bacteria Co-Inoculations vol.11, pp.5, 2012, https://doi.org/10.3390/agronomy11050959
  19. Isolation, Characterization of Zn Solubilizing Bacterium (Pseudomonas protegens RY2) and its Contribution in Growth of Chickpea (Cicer arietinum L) as Deciphered by Improved Growth Parameters and Zn C vol.19, pp.3, 2012, https://doi.org/10.1177/15593258211036791