References
- Bhatia, V. S., P. Singh, S. P. Wani, G. S. Chauhan, A. V. R. Kesava Rao, A. K. Mishra, and K. Srinivas. 2008. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agric. Forest Meteorol. 148: 1252-1265. https://doi.org/10.1016/j.agrformet.2008.03.004
- Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302: 1-17. https://doi.org/10.1007/s11104-007-9466-3
- Chauhan, G. S. and O. P. Joshi. 2005. Soybean (Glycine max) - The 21st century crop. Indian J. Agric. Sci. 75: 461-469.
- Di Simine, C. D., J. A. Sayed, and G. M. Gadd. 1998. Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol. Fertil. Soils 28: 87-94. https://doi.org/10.1007/s003740050467
- Fasim, F., N. Ahmed, R. Parsons, and G. M. Gadd. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 213: 1-6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x
- Franz, A., W. Burgsteller, and F. Schinner. 1991. Leaching with Penicillium simplicissimum: Influence on metals and buffers on proton extrusion and citric acid production. Appl. Environ. Microbiol. 57: 769-774.
- Gadd, G. M. 2007. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111: 3-49. https://doi.org/10.1016/j.mycres.2006.12.001
- Ghosh, A., M. Bhardwaj, T. Satyanarayana, M. Khurana, S. Mayilraj, and R. K. Jain. 2007. Bacillus lehensis sp. nov., an alkali tolerant bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 238-242. https://doi.org/10.1099/ijs.0.64617-0
- Hamdali, H., B. Bouizgarne, M. Hafidi, A. Lebrihi, M. J. Virolle, and Y. Ouhdouch. 2008. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl. Soil Ecol. 38: 12-19. https://doi.org/10.1016/j.apsoil.2007.08.007
- Jackson, M. L. 1967. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi.
- Koneman, E. W., S. D. Allen, W. M. Janda, P. C. Schreckenberger, and W. C. Winn Jr. 1992. Color Atlas and Textbook of Diagnostic Microbiology, 4th Ed. J. B. Lippincott Company, Philadelphia.
- Lim, J. M., C. O. Jeon, J. C. Lee, Y. J. Ju, D. J. Park, and C. J. Kim. 2006. Bacillus koreensis sp. nov., a spore-forming bacterium, isolated from the rhizosphere of willow roots in Korea. Int. J. Syst. Evol. Microbiol. 56: 59-63. https://doi.org/10.1099/ijs.0.63701-0
- Lindsay, W. L. 1979. Chemical Equilibria in Soils. John-Willey and Sons, NewYork.
- Mader, P., F. Kiser, A. Adholeya, R. Singh, H. S. Uppal, A. K. Sharma, et al. 2010. Inoculation of root microorganisms for sustainable wheat-rice and wheat-blackgram rotations in India. Soil Biol. Biochem. 43: 609-619.
- Madhaiyan, M., V. S. Saravanan, D. B. S. S Jovi, H. S. Lee, R. Thenmozhi, K. Hari, and T. Sa. 2004. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol. Res. 159: 233-243. https://doi.org/10.1016/j.micres.2004.04.001
- Prasad, R. 2010. Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr. Sci. 98: 1300-1304.
- Ramesh, A., S. K. Sharma, O. P. Joshi, and I. R. Khan. 2011. Phytase, phosphatase activity and P-nutrition of soybean as influenced by inoculation of Bacillus. Indian J. Microbiol. 51: 94-99. https://doi.org/10.1007/s12088-011-0104-7
- Reddy, G. S. N., A. Uttam, and S. Shivaji. 2008. Bacillus cecembensis sp. nov., isolated from the Pindari glacier of the Indian Himalayas. Int. J. Syst. Evol. Microbiol. 58: 2330-2335. https://doi.org/10.1099/ijs.0.65515-0
- Roesti, D., R. Gaur, B. N. Johri, G. Imfeld, S. Sharma, M. Aragno, and K. Kawaljeet. 2006. Plant growth stage, fertilizer management and bioinoculant of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38: 1111-1120. https://doi.org/10.1016/j.soilbio.2005.09.010
- Sachdev, D., P. Nema, P. Dhakephalkar, S. Zinjarde, and B. Chopade. 2010. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 165: 627-638. https://doi.org/10.1016/j.micres.2009.12.002
- Sarathambal, C., M. Thangaraju, and M. Gomathy. 2010. Assessing the zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labeled 65Zn compounds. Indian J. Microbiol. 50: 103-109. https://doi.org/10.1007/s12088-010-0066-1
- Saravanan, V. S., S. R. Subramaniam, and S. Anthoni Raj. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz. J. Microbiol. 34: 121-125.
- Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794-1798. https://doi.org/10.1016/j.chemosphere.2006.07.067
- Saravanan, V. S., J. Osborne, M. Madhaiyan, L. Mathew, J. Chung, K. Ahn, and T. Sa. 2007. Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells. J. Microbiol. Biotechnol. 17: 1477-1482.
- Sasser, M. 1990. Tracking a strain using the microbial identification system. Technical Note 102, MIS, Newark, DE.
- Sasser, M. 2001. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101.
- Sasser, M. and M. D. Wichman. 1991. Identification of microorganisms through use of gas chromatography and highperformance liquid chromatography, pp. 111-118. In A. Balows, W. J. Hausler Jr., K. L. Herrman, H. D. Isenberg, and H. J. Shadomy (eds.). Manual of Clinical Microbiology, 5th Ed. American Society for Microbiology, Washington, DC.
- Sayer, J. A. and G. M. Gadd. 1998. Solubilization and precipitation of metals by fungi. Minerol. Soc. Bull. pp. 3-5.
- Shahab, S. and N. Ahmed. 2008. Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. African J. Biotechnol. 7: 1543-1549.
- Sharma, S. K., S. Turker, M. P. Sharma and A. Ramesh. 2008. Solubilization of insoluble zinc compounds by Pseudomonas isolates from Vertisols of Malwa region. Presented in 49th Annual Conference, International Symposium on Microbial Biotechnology: Diversity, Genomics and Metagenomics, University of Delhi, Delhi, Nov. 18-20, 2008.
- Shivaji, S., P. Chaturvedi, Z. Begum, P. K. Pindi, R. Manorama, D. A. Padmanaban, et al. 2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int. J. Syst. Evol. Microbiol. 59: 2977-2986. https://doi.org/10.1099/ijs.0.002527-0
- Singh, B., S. Kumar, A. Natesan, B. K. Singh, and K. Usha. 2005. Improving zinc efficiency of cereals under deficiency. Curr. Sci. 88: 36-44.
- Sneath, P. A., N. S. Mair, and M. E. Sharphe. 1986. Bergey's Manual of Systematic Bacteriology, Vol. 2. William and Wilkins.
- Takkar, P. N. 1996. Micronutrient research and sustainable agricultural production. J. Indian Soc. Soil Sci. 44: 563-581.
- Tariq, M., S. Hameed, K. A. Malik, and F. Y. Hafeez. 2007. Plant root associated bacteria for mobilization in rice. Pak. J. Bot. 39: 245-253.
- Thompson, L. U. 1989. Nutritional and physiological effects of phytic acid, pp. 410-431. In J. E. Kinsells and W. G. Soucie (eds.). Food Proteins. American Oil Chemist Society Champaign, IL.
- Turker, S. 2007. Exploring zinc-solubilizing Pseudomonas from rhizosphere soils of soybean [Glycine max (L.) Merrill]. M. Sc. Dissertation, Rani Durgavati University, Jabalpur, M.P.
- White, C., J. A. Sayer, and G. M. Gadd. 1997. Microbial solubilization and immobilization of toxic metals: Key biochemical processes for treatment of contamination. FEMS Microbiol. Rev. 20: 503-516. https://doi.org/10.1111/j.1574-6976.1997.tb00333.x
- World Health Organization. 2002. The World Health Report 2002. Reducing Risks, Promoting Healthy Life. Geneva.
Cited by
- Monitoring the Ecology of Bacillus During Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods vol.23, pp.5, 2013, https://doi.org/10.4014/jmb.1211.11065
- Plant Growth-Promoting Traits in Enterobacter cloacae subsp. dissolvens MDSR9 Isolated from Soybean Rhizosphere and its Impact on Growth and Nutrition of Soybean and Wheat Upon Inoculation vol.3, pp.1, 2012, https://doi.org/10.1007/s40003-014-0100-3
- Ecology of Bacillaceae vol.3, pp.2, 2012, https://doi.org/10.1128/microbiolspec.tbs-0017-2013
- Expression of Zinc Transporter Genes in Rice as Influenced by Zinc-Solubilizing Enterobacter cloacae Strain ZSB14 vol.7, pp.None, 2016, https://doi.org/10.3389/fpls.2016.00446
- Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn vol.416, pp.1, 2012, https://doi.org/10.1007/s11104-017-3189-x
- Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02593
- Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass vol.27, pp.3, 2017, https://doi.org/10.4014/jmb.1601.01021
- Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat vol.37, pp.1, 2012, https://doi.org/10.1007/s00344-017-9716-4
- Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.) vol.84, pp.1, 2012, https://doi.org/10.1128/aem.01715-17
- Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content vol.68, pp.12, 2012, https://doi.org/10.1007/s13213-018-1388-1
- Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance vol.9, pp.None, 2012, https://doi.org/10.1038/s41598-019-54685-y
- Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review vol.40, pp.2, 2012, https://doi.org/10.1007/s13593-020-00619-2
- Biodegradation of carbendazim by a potent novel Chryseobacterium sp. JAS14 and plant growth promoting Aeromonas caviae JAS15 with subsequent toxicity analysis vol.10, pp.7, 2012, https://doi.org/10.1007/s13205-020-02319-w
- Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.) vol.457, pp.1, 2012, https://doi.org/10.1007/s11104-020-04730-x
- Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan From Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.669693
- Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol vol.5, pp.None, 2021, https://doi.org/10.3389/fsufs.2021.605195
- Cladosporium sp. Isolate as Fungal Plant Growth Promoting Agent vol.11, pp.2, 2021, https://doi.org/10.3390/agronomy11020392
- Common Bean Yield and Zinc Use Efficiency in Association with Diazotrophic Bacteria Co-Inoculations vol.11, pp.5, 2012, https://doi.org/10.3390/agronomy11050959
- Isolation, Characterization of Zn Solubilizing Bacterium (Pseudomonas protegens RY2) and its Contribution in Growth of Chickpea (Cicer arietinum L) as Deciphered by Improved Growth Parameters and Zn C vol.19, pp.3, 2012, https://doi.org/10.1177/15593258211036791