DOI QR코드

DOI QR Code

Attenuated Secretion of the Thermostable Xylanase xynB from Pichia pastoris Using Synthesized Sequences Optimized from the Preferred Codon Usage in Yeast

  • Huang, Yuankai (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Chen, Yaosheng (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Mo, Delin (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • Cong, Peiqing (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University) ;
  • He, Zuyong (State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University)
  • Received : 2011.09.16
  • Accepted : 2011.11.07
  • Published : 2012.03.28

Abstract

Xylanase has been used extensively in the industrial and agricultural fields. However, the low-yield production of xylanase from native species cannot meet the increasing demand of the market. Therefore, improving the heterologous expression of xylanase through basic gene optimization may help to overcome the shortage. In this study, we synthesized a high-GC-content native sequence of the thermostable xylanase gene xynB from Streptomyces olivaceoviridis A1 and, also designed a slightly AT-biased sequence with codons completely optimized to be favorable to Pichia pastoris. The comparison of the sequences' expression efficiencies in P. pastoris X33 was determined through the detection of single-copy-number integrants, which were quantified using qPCR. Surprisingly, the high GC content did not appear to be detrimental to the heterologous expression of xynB in yeast, whereas the optimized sequence, with its extremely skewed codon usage, exhibited more abundant accumulation of synthesized recombinant proteins in the yeast cell, but an approximately 30% reduction of the secretion level, deduced from the enzymatic activity assay. In this study, we developed a more accurate method for comparing the expression levels of individual yeast transformants. Moreover, our results provide a practical example for further investigation of what constitutes a rational design strategy for a heterologously expressed and secreted protein.

Keywords

References

  1. Ahmed, S., S. Riaz, and A. Jamil. 2009. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 84: 19-35. https://doi.org/10.1007/s00253-009-2079-4
  2. Amberg, D., D. Burke, and J. Strathern. 2005. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, NY.
  3. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  4. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  5. Buchert, J., M. Tenkanen, A. Kantelinen, and L. Viikari. 1994. Application of xylanases in the pulp and paper-industry. Bioresour. Technol. 50: 65-72. https://doi.org/10.1016/0960-8524(94)90222-4
  6. Bulmer, M. 1991. The selection-mutation-drift theory of synonymous codon usage. Genetics 129: 897-907.
  7. Clare, J. J., F. B. Rayment, S. P. Ballantine, K. Sreekrishna, and M. A. Romanos. 1991. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (NY) 9: 455-460. https://doi.org/10.1038/nbt0591-455
  8. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  9. Coughlan, M. P. and G. P. Hazlewood. 1993. Beta-1,4-D-xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289.
  10. Cregg, J. M., J. L. Cereghino, J. Y. Shi, and D. R. Higgins. 2000. Recombinant protein expression in Pichia pastoris. Molec. Biotechnol. 16: 23-52. https://doi.org/10.1385/MB:16:1:23
  11. Damasceno, L. M., K. A. Anderson, G. Ritter, J. M. Cregg, L. J. Old, and C. A. Batt. 2007. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl. Microbiol. Biotechnol. 74: 381-389. https://doi.org/10.1007/s00253-006-0652-7
  12. Flick, K., S. Ahuja, A. Chene, M. T. Bejarano, and Q. Chen. 2004. Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli. Malar. J. 3: 50. https://doi.org/10.1186/1475-2875-3-50
  13. Grantham, R., C. Gautier, M. Gouy, R. Mercier, and A. Pave. 1980. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8: r49-r62.
  14. Griswold, K. E., N. A. Mahmood, B. L. Iverson, and G. Georgiou. 2003. Effects of codon usage versus putative 5'-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expr. Purif. 27: 134-142. https://doi.org/10.1016/S1046-5928(02)00578-8
  15. Harris, G. W., R. W. Pickersgill, I. Connerton, P. Debeire, J. P. Touzel, C. Breton, and S. Perez. 1997. Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins 29: 77-86. https://doi.org/10.1002/(SICI)1097-0134(199709)29:1<77::AID-PROT6>3.0.CO;2-C
  16. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
  17. Hershberg, R. and D. A. Petrov. 2008. Selection on codon bias. Annu. Rev. Genet. 42: 287-299. https://doi.org/10.1146/annurev.genet.42.110807.091442
  18. Hillier, C. J., L. A. Ware, A. Barbosa, E. Angov, J. A. Lyon, D. G. Heppner, and D. E. Lanar. 2005. Process development and analysis of liver-stage antigen 1, a preerythrocyte-stage proteinbased vaccine for Plasmodium falciparum. Infect. Immun. 73: 2109-2115. https://doi.org/10.1128/IAI.73.4.2109-2115.2005
  19. Inan, M., D. Aryasomayajula, J. Sinha, and M. M. Meagher. 2006. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol. Bioeng. 93: 771-778. https://doi.org/10.1002/bit.20762
  20. Kim, C. H., Y. Oh, and T. H. Lee. 1997. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene 199: 293-301. https://doi.org/10.1016/S0378-1119(97)00384-3
  21. Kimchi-Sarfaty, C., J. M. Oh, I. W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Ambudkar, and M. M. Gottesman. 2007. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528. https://doi.org/10.1126/science.1135308
  22. Kurland, C. and J. Gallant. 1996. Errors of heterologous protein expression. Curr. Opin. Biotechnol. 7: 489-493. https://doi.org/10.1016/S0958-1669(96)80050-4
  23. Lin-Cereghino, J., M. D. Hashimoto, A. Moy, J. Castelo, C. C. Orazem, P. Kuo, et al. 2008. Direct selection of Pichia pastoris expression strains using new G418 resistance vectors. Yeast 25: 293-299. https://doi.org/10.1002/yea.1587
  24. Mansur, M., C. Cabello, L. Hernandez, J. Pais, L. Varas, J. Valdes, et al. 2005. Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnol. Lett. 27: 339-345. https://doi.org/10.1007/s10529-005-1007-7
  25. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Moriyama, E. N. and J. R. Powell. 1997. Codon usage bias and tRNA abundance in Drosophila. J. Mol. Evol. 45: 514-523. https://doi.org/10.1007/PL00006256
  27. Nordberg Karlsson, E., E. Bartonek-Roxa, and O. Holst. 1997. Cloning and sequence of a thermostable multidomain xylanase from the bacterium Rhodothermus marinus. Biochim. Biophys. Acta 1353: 118-124. https://doi.org/10.1016/S0167-4781(97)00093-6
  28. Outchkourov, N. S., W. J. Stiekema, and M. A. Jongsma. 2002. Optimization of the expression of equistatin in Pichia pastoris. Protein Expr. Purif. 24: 18-24. https://doi.org/10.1006/prep.2001.1523
  29. Parmley, J. L. and L. D. Hurst. 2007. How do synonymous mutations affect fitness? Bioessays 29: 515-519. https://doi.org/10.1002/bies.20592
  30. Romanos, M. A., J. J. Clare, K. M. Beesley, F. B. Rayment, S. P. Ballantine, A. J. Makoff, G. Dougan, N. F. Fairweather, and I. G. Charles. 1991. Recombinant Bordetella pertussis pertactin (P69) from the yeast Pichia pastoris: High-level production and immunological properties. Vaccine 9: 901-906. https://doi.org/10.1016/0264-410X(91)90011-T
  31. Sinclair, G. and F. Y. Choy. 2002. Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr. Purif. 26: 96-105. https://doi.org/10.1016/S1046-5928(02)00526-0
  32. Singh, N. D., V. L. B. DuMont, M. J. Hubisz, R. Nielsen, and C. F. Aquadro. 2007. Patterns of mutation and selection at synonymous sites in Drosophila. Molec. Biol. Evol. 24: 2687-2697. https://doi.org/10.1093/molbev/msm196
  33. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki. 2003. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340. https://doi.org/10.1016/S0032-9592(02)00331-X
  34. Torronen, A. and J. Rouvinen. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34: 847-856. https://doi.org/10.1021/bi00003a019
  35. Vassileva, A., D. A. Chugh, S. Swaminathan, and N. Khanna. 2001. Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 21: 71-80. https://doi.org/10.1006/prep.2000.1335
  36. Walsh, G. A., R. F. Power, and D. R. Headon. 1993. Enzymes in the animal-feed industry. Trends Biotechnol. 11: 424-430. https://doi.org/10.1016/0167-7799(93)90006-U
  37. Wang, Y. R., H. L. Zhang, Y. Z. He, H. Y. Luo, and B. Yao. 2007. Characterization, gene cloning, and expression of a novel xylanase XYNB from Streptomyces olivaceoviridis A1. Aquaculture 267: 328-334. https://doi.org/10.1016/j.aquaculture.2007.03.005
  38. Williams, P. E. V. 1997. Poultry production and science: Future directions in nutrition. Worlds Poult. Sci. J. 53: 33-48. https://doi.org/10.1079/WPS19970004
  39. Woo, J. H., Y. Y. Liu, A. Mathias, S. Stavrou, Z. R. Wang, J. Thompson, and D. M. Neville. 2002. Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr. Purif. 25: 270-282. https://doi.org/10.1016/S1046-5928(02)00009-8
  40. Wright, F. 1990. The "effective number of codons" used in a gene. Gene 87: 23-29. https://doi.org/10.1016/0378-1119(90)90491-9
  41. Yadava, A. and C. F. Ockenhouse. 2003. Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect. Immun. 71: 4961-4969. https://doi.org/10.1128/IAI.71.9.4961-4969.2003
  42. Zhu, T., M. Guo, Z. Tang, M. Zhang, Y. Zhuang, J. Chu, and S. Zhang. 2009. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J. Appl. Microbiol. 107: 954-963. https://doi.org/10.1111/j.1365-2672.2009.04279.x

Cited by

  1. Production of α-Cyclodextrin Glycosyltransferase in Bacillus megaterium MS941 by Systematic Codon Usage Optimization vol.60, pp.41, 2012, https://doi.org/10.1021/jf302819h
  2. Enhanced production of α-cyclodextrin glycosyltransferase in Escherichia coli by systematic codon usage optimization vol.39, pp.12, 2012, https://doi.org/10.1007/s10295-012-1185-y
  3. Improved Expression and Characterization of a Multidomain Xylanase from Thermoanaerobacterium aotearoense SCUT27 in Bacillus subtilis vol.63, pp.28, 2012, https://doi.org/10.1021/acs.jafc.5b01259