DOI QR코드

DOI QR Code

Ramlibacter ginsenosidimutans sp. nov., with Ginsenoside-Converting Activity

  • Wang, Liang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • An, Dong-Shan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Song-Gun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Feng-Xie (College of Bio & Food Technology, Dalian Polytechnic University) ;
  • Kim, Sun-Chang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Sung-Taik (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Im, Wan-Taek (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2011.06.20
  • Accepted : 2011.11.09
  • Published : 2012.03.28

Abstract

A novel ${\beta}$-proteobacterium, designated BXN5-$27^T$, was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-$27^T$ exhibited ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis $TMB834^T$ and Ramlibacter tataouinensis$TTB310^T$ (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were $C_{16:0}$, summed feature 4 (comprising $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2OH), and $C_{17:0}$ cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-$27^T$ to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-$27^T$ (=DSM $23480^T$ = LMG $24525^T$ = KCTC $22276^T$).

Keywords

References

  1. Atlas, R. M. 1993. Handbook of Microbiological Media. L. C. Parks. (ed.). CRC Press, Boca Raton, FL.
  2. Buck, J. D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993.
  3. Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A Web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  4. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  5. Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416.
  6. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  7. Heulin, T., M. Barakat, R. Christen, M. Lesourd, L. Sutra, G. De Luca, and W. Achouak. 2003. Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cystproducing bacteria isolated from subdesert soil in Tunisia. Int. J. Syst. Evol. Microbiol. 53: 589-594. https://doi.org/10.1099/ijs.0.02482-0
  8. Im, W.-T., S.-Y. Kim, Q.-M. Liu, J.-E. Yang, S.-T. Lee, and T.-H. Yi. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48: 623-628. https://doi.org/10.1007/s12275-010-0001-5
  9. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
  10. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinformatics 5: 150-163. https://doi.org/10.1093/bib/5.2.150
  11. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  12. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology. Wiley, New York, USA.
  13. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  14. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.
  15. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849. https://doi.org/10.1099/00207713-44-4-846
  16. Ten, L. N., W.-T. Im, M.-K. Kim, M.-S. Kang, and S.-T Lee. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375-382. https://doi.org/10.1016/j.mimet.2003.11.008
  17. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL-X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  18. Wang, L., Q.-M. Liu, B.-H. Sung, D.-S. An, H.-G. Lee, S.-G. Kim, et al. 2011. Bioconversion of ginsenosides $Rb_1$, $Rb_2$, Rc and Rd by novel ${\beta}$-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: Cloning, expression, and enzyme characterization. J. Biotechnol. 156: 125-133. https://doi.org/10.1016/j.jbiotec.2011.07.024

Cited by

  1. Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside vol.23, pp.4, 2012, https://doi.org/10.4014/jmb.1212.12053
  2. Sphingomonas ginsenosidivorax sp. nov., with the ability to transform ginsenosides vol.103, pp.6, 2013, https://doi.org/10.1007/s10482-013-9916-2
  3. Mucilaginibacter ginsenosidivorax sp. nov., with ginsenoside converting activity isolated from sediment vol.51, pp.3, 2013, https://doi.org/10.1007/s12275-013-2653-4
  4. 인삼 근권 토양에서 분리한 Stenotrophomonas sp. 4KR4의 Ginsenoside Rb1 전환능 및 분류학적 특성 vol.49, pp.4, 2012, https://doi.org/10.7845/kjm.2013.3085
  5. List of new names and new combinations previously effectively, but not validly, published vol.64, pp.3, 2012, https://doi.org/10.1099/ijs.0.062521-0
  6. Immunostimulatory Effect of Fermented Red Ginseng in the Mouse Model vol.19, pp.1, 2014, https://doi.org/10.3746/pnf.2014.19.1.010
  7. Notification of changes in taxonomic opinion previously published outside the IJSEM vol.64, pp.7, 2012, https://doi.org/10.1099/ijs.0.066134-0
  8. Mucilaginibacter pocheonensis sp. nov., with ginsenoside-converting activity, isolated from soil of a ginseng-cultivating field vol.66, pp.8, 2012, https://doi.org/10.1099/ijsem.0.001069
  9. Ramlibacter rhizophilus sp. nov., isolated from rhizosphere soil of national flower Mugunghwa from South Korea vol.67, pp.10, 2012, https://doi.org/10.1099/ijsem.0.002191
  10. Ramlibacter monticola sp. nov., isolated from forest soil vol.67, pp.11, 2012, https://doi.org/10.1099/ijsem.0.002314
  11. Ramlibacter alkalitolerans sp. nov., alkali-tolerant bacterium isolated from soil of ginseng vol.67, pp.11, 2012, https://doi.org/10.1099/ijsem.0.002342
  12. Microbial Enrichment Culture Responsible for the Complete Oxidative Biodegradation of 3-Amino-1,2,4-triazol-5-one (ATO), the Reduced Daughter Product of the Insensitive Munitions Compound 3-Nitro-1,2, vol.53, pp.21, 2012, https://doi.org/10.1021/acs.est.9b04065
  13. Culture-Independent Analysis of Linuron-Mineralizing Microbiota and Functions in on-Farm Biopurification Systems via DNA-Stable Isotope Probing: Comparison with Enrichment Culture vol.54, pp.15, 2012, https://doi.org/10.1021/acs.est.0c02124
  14. Ramlibacter pinisoli sp. nov., a novel bacterial species isolated from pine garden soil vol.70, pp.11, 2012, https://doi.org/10.1099/ijsem.0.004486
  15. Ramlibacter algicola sp. nov., isolated from a freshwater alga Cryptomonas obovoidea vol.71, pp.9, 2012, https://doi.org/10.1099/ijsem.0.005010
  16. Ramlibacter terrae sp. nov. and Ramlibacter montanisoli sp. nov., Isolated from Soil vol.31, pp.9, 2012, https://doi.org/10.4014/jmb.2105.05023