DOI QR코드

DOI QR Code

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio (Department of Biology and CESAM, University of Aveiro) ;
  • Coelho, Francisco J.R.C. (Department of Biology and CESAM, University of Aveiro) ;
  • Domingues, Patricia (Department of Biology and CESAM, University of Aveiro) ;
  • Santos, Ana L. (Department of Biology and CESAM, University of Aveiro) ;
  • Gomes, Newton C.M. (Department of Biology and CESAM, University of Aveiro) ;
  • Almeida, Adelaide (Department of Biology and CESAM, University of Aveiro) ;
  • Cunha, Angela (Department of Biology and CESAM, University of Aveiro)
  • Received : 2011.10.13
  • Accepted : 2011.11.17
  • Published : 2012.03.28

Abstract

Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.

Keywords

References

  1. Abouseoud, M., A. Yataghene, A. Amrane, and R. Maachi. 2010. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J. Hazard. Mater. 180: 131-136. https://doi.org/10.1016/j.jhazmat.2010.04.003
  2. Agogue, H., E. O. Casamayor, M. Bourrain, I. Obernosterer, F. Joux, G. J. Herndl, and P. Lebaron. 2005. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol. Ecol. 54: 269-280. https://doi.org/10.1016/j.femsec.2005.04.002
  3. Amirmozafari, N., F. Malekzadeh, F. Hosseini, and N. Ghaemi. 2007. Isolation and identification of anionic surfactant degrading bacteria from activated sludge. Iran. Biomed. J. 11: 81-86.
  4. Attaway, H. H. and M. G. Schmidt. 2002. Tandem biodegradation of BTEX components by two Pseudomonas sp. Curr. Microbiol. 45: 30-36. https://doi.org/10.1007/s00284-001-0053-1
  5. Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 26: 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6
  6. Barbieri, P., L. Palladino, P. Gennaro, and E. Galli. 1993. Alternative pathways for o-xylene or m-xylene and p-xylene degradation in a Pseudomonas stutzeri strain. Biodegradation 4: 71-80. https://doi.org/10.1007/BF00702323
  7. Batista, S., A. Mounteer, F. Amorim, and M. Totola. 2006. Isolation and characterization of biosurfactant/bioemulsifierproducing bacteria from petroleum contaminated sites. Bioresource Technol. 97: 868-875. https://doi.org/10.1016/j.biortech.2005.04.020
  8. Bruheim, P., H. Bredholt, and K. Eimhjellen. 1999. Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil. Appl. Environ. Microbiol. 65: 1658-1661.
  9. Burch, A. Y., B. K. Shimada, P. J. Browne, and S. E. Lindow. 2010. Novel high-throughput detection method to assess bacterial surfactant production. Appl. Environ. Microbiol. 76: 5363-5372. https://doi.org/10.1128/AEM.00592-10
  10. Caiazza, N. C., R. M. Q. Shanks, and G. O'Toole. 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187: 7351. https://doi.org/10.1128/JB.187.21.7351-7361.2005
  11. Cebron, A., M. Norini, T. Beguiristain, and C. Leyval. 2008. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-$RHD{\alpha}$) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiol. Methods 73: 148-159. https://doi.org/10.1016/j.mimet.2008.01.009
  12. Chang, M., T. Holoman, and H. Yi. 2008. Molecular characterization of surfactant-driven microbial community changes in anaerobic phenanthrene-degrading cultures under methanogenic conditions. Biotechnol. Lett. 30: 1595-1601. https://doi.org/10.1007/s10529-008-9731-4
  13. Chen, C. Y., S. C. Baker, and R. C. Darton. 2007. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J. Microbiol. Methods 70: 503-510. https://doi.org/10.1016/j.mimet.2007.06.006
  14. Coelho, F. J. R. C., S. Sousa, L. Santos, A. L. Santos, A. Almeida, N. C. M. Gomes, and A. Cunha. 2011. Exploring hydrocarbonoclastic bacterial communities in the estuarine surface microlayer. Aquat. Microb. Ecol. 64: 185-195. https://doi.org/10.3354/ame01526
  15. Davey, M. E., N. C. Caiazza, and G. A. O'Toole. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185: 1027-1036. https://doi.org/10.1128/JB.185.3.1027-1036.2003
  16. De Souza, M., C. Huang, N. Chee, and N. Terry. 1999. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209: 259-263. https://doi.org/10.1007/s004250050630
  17. Dias, J. M., J. Lopes, and I. Dekeyser. 1999. Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanol. Acta 22: 473-485. https://doi.org/10.1016/S0399-1784(00)87681-1
  18. Edlund, A. and J. K. Jansson. 2008. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrenedegrading bacteria in phenanthrene-enriched polluted baltic sea sediments. FEMS Microbiol. Ecol. 65: 513-525. https://doi.org/10.1111/j.1574-6941.2008.00513.x
  19. Franklin, M. P., I. R. McDonald, D. G. Bourne, N. J. P. Owens, R. C. U. Goddard, and J. C. Murrell. 2005. Bacterial diversity in the bacterioneuston (sea surface microlayer): The bacterioneuston through the looking glass. Environ. Microbiol. 7: 723-736. https://doi.org/10.1111/j.1462-2920.2004.00736.x
  20. Gaze, W., N. Abdouslam, P. Hawkey, and E. Wellington. 2005. Incidence of Class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob. Agents Chemother. 49: 1802. https://doi.org/10.1128/AAC.49.5.1802-1807.2005
  21. Gnanamani, A., V. Kavitha, N. Radhakrishnan, G. Sekaran, G. S. Rajakumar, and A. Mandal. 2010. Microbial biosurfactants and hydrolytic enzymes mediate in situ development of stable supra-molecular assemblies in fatty acids released from triglycerides. Colloids. Surf. B Biointerfaces 78: 200-207. https://doi.org/10.1016/j.colsurfb.2010.03.001
  22. Godfrey, S. A. C., J. W. Marshall, and J. D. Klena. 2001. Genetic characterization of Pseudomonas 'NZI7' - a novel pathogen that results in a brown blotch disease of Agaricus bisporus. J. Appl. Microbiol. 91: 412-420. https://doi.org/10.1046/j.1365-2672.2001.01398.x
  23. Gomes, N., L. Borges, R. Paranhos, F. Pinto, E. Krogerrecklenfort, L. Mendonça-Hagler, and K. Smalla. 2007. Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl. Environ. Microbiol. 73: 7392. https://doi.org/10.1128/AEM.01099-07
  24. Gomes, N., I. A. Kosheleva, W. R. Abraham, and K. Smalla. 2005. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol. Ecol. 54: 21-33. https://doi.org/10.1016/j.femsec.2005.02.005
  25. Guerra-Santos, L., O. Kappeli, and A. Fiechter. 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301.
  26. Hale, M. S. and J. G. Mitchell. 1997. Sea surface microlayer and bacterioneuston spreading dynamics. Mar. Ecol. Prog. Ser. 147: 269-276.
  27. Harayama, S., H. Kishira, Y. Kasai, and K. Shutsubo. 1999. Petroleum biodegradation in marine environments. J. Mol. Microbiol. Biotechnol. 1: 63-70.
  28. Harvey, G. W. and L. A. Burzell. 1972. A simple microlayer method for small samples. Limnol. Oceanogr. 17: 156-160. https://doi.org/10.4319/lo.1972.17.1.0156
  29. Henriques, I. S., A. Almeida, A. Cunha, and A. Correia. 2004. Molecular sequence analysis of prokaryotic diversity in the middle and outer sections of the Portuguese estuary Ria de Aveiro. FEMS Microbiol. Ecol. 49: 269-279. https://doi.org/10.1016/j.femsec.2004.04.003
  30. Hoyle, B. D., J. Jass, and J. W. Costerton. 1990. The biofilm glycocalyx as a resistance factor. J. Antimicrob. Chemother. 26: 1-2.
  31. Hrenovic, J. and T. Ivankovic. 2007. Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture. Cent. Eur. J. Biol. 2: 405-414. https://doi.org/10.2478/s11535-007-0029-7
  32. Hubert, C., Y. Shen, and G. Voordouw. 1999. Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Appl. Environ. Microbiol. 65: 3064.
  33. Ishikawa, S., Y. Matsumura, F. Yoshizako, and T. Tsuchido. 2002. Characterization of a cationic surfactant resistant mutant isolated spontaneously from Escherichia coli. J. Appl. Microbiol. 92: 261-268. https://doi.org/10.1046/j.1365-2672.2002.01526.x
  34. Janek, T., M. Lukaszewicz, T. Rezanka, and A. Krasowska. 2010. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol. 101: 6118-6123. https://doi.org/10.1016/j.biortech.2010.02.109
  35. Joveiæ, B., J. Begovi, J. Lozo, L. Topisirovi, and M. Koji. 2009. Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch. Biol. Sci. 61: 159-164. https://doi.org/10.2298/ABS0902159J
  36. Kebbouche-Gana, S., M. Gana, S. Khemili, F. Fazouane-Naimi, N. Bouanane, M. Penninckx, and H. Hacene. 2009. Isolation and characterization of halophilic Archaea able to produce biosurfactants. J. Ind. Microbiol. Biotechnol. 36: 727-738. https://doi.org/10.1007/s10295-009-0545-8
  37. Kostal, J., M. Suchanek, H. Klierova, K. Demnerova, B. Kralova, and D. L. McBeth. 1998. Pseudomonas C12B, an SDS degrading strain, harbours a plasmid coding for degradation of medium chain length n-alkanes. Int. Biodeterior. Biodegradation 42: 221-228. https://doi.org/10.1016/S0964-8305(98)00053-5
  38. Kozarac, Z., D. Risovic, S. Frka, and D. Mobius. 2005. Reflection of light from the air/water interface covered with sea-surface microlayers. Mar. Chem. 96: 99-113. https://doi.org/10.1016/j.marchem.2004.12.003
  39. Lacal, J., F. Munoz-Martinez, J.-A. Reyes-Darias, E. Duque, M. Matilla, A. Segura, et al. 2011. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ. Microbiol. 13: 1733-1744. https://doi.org/10.1111/j.1462-2920.2011.02493.x
  40. Lakshmipathy, T. D., A. S. A. Prasad, and K. Kannabiran. 2010. Production of biosurfactant and heavy metal resistance activity of Streptomyces sp. VITDDK3 - a novel halo tolerant actinomycetes isolated from saltpan soil. Adv. Biol. Res. 4: 108-115.
  41. Li, A., M. Xu, W. Sun, and G. Sun. 2011. Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl. Biochem. Biotechnol. 163: 600-611. https://doi.org/10.1007/s12010-010-9066-1
  42. Li, D., T. Yu, Y. Zhang, M. Yang, Z. Li, M. Liu, and R. Qi. 2010. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl. Environ. Microbiol. 76: 3444- 3451. https://doi.org/10.1128/AEM.02964-09
  43. Lin, Q. and W. Jianlong. 2010. Biodegradation characteristics of quinoline by Pseudomonas putida. Bioresour. Technol. 101: 7683-7686. https://doi.org/10.1016/j.biortech.2010.05.026
  44. Luz, A. P., V. H. Pellizari, L. G. Whyte, and C. W. Greer. 2004. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can. J. Microbiol. 50: 323-333. https://doi.org/10.1139/w04-008
  45. Malik, A., P. Kimchhayarasy, and K. Kakii. 2005. Effect of surfactants on stability of Acinetobacter johnsonii S35 and Oligotropha carboxidovorans S23 coaggregates. FEMS Microbiol. Ecol. 51: 313-321. https://doi.org/10.1016/j.femsec.2004.09.005
  46. Maneerat, S. and K. Phetrong. 2007. Isolation of biosurfactantproducing marine bacteria and characteristics of selected biosurfactant. J. Sci. Technol. 29: 781-791.
  47. Mariani, L., D. De Pascale, O. Faraponova, A. Tornambe, A. Sarni, S. Giuliani, et al. 2006. The use of a test battery in marine ecotoxicology: The acute toxicity of sodium dodecyl sulfate. Environ. Toxicol. 21: 373-379. https://doi.org/10.1002/tox.20204
  48. Mercade, M. E., L. Monleon, C. Andres, I. Rodon, E. Martinez, M. J. Espuny, and A. Manresa. 1996. Screening and selection of surfactant-producing bacteria from waste lubricating oil. J. Appl. Microbiol. 81: 161-166. https://doi.org/10.1111/j.1365-2672.1996.tb04494.x
  49. Molina, M., N. Gonzalez, L. Bautista, R. Sanz, R. Simarro, I. Sanchez, and J. Sanz. 2009. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation 20: 789-800. https://doi.org/10.1007/s10532-009-9267-x
  50. Mulkins-Phillips, G. and J. E. Stewart. 1974. Effect of four dispersants on biodegradation and growth of bacteria on crude oil. Appl. Environ. Microbiol. 28: 547-552.
  51. Nikaido, H. 2001. Preventing drug access to targets: Cell surface permeability barriers and active efflux in bacteria. Semin. Cell. Dev. Biol. 12: 215-223. https://doi.org/10.1006/scdb.2000.0247
  52. Park, Y.-D., H. Yi, K. S. Baik, C. N. Seong, K. S. Bae, E. Y. Moon, and J. Chun. 2006. Pseudomonas segetis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 56: 2593-2595. https://doi.org/10.1099/ijs.0.63792-0
  53. Pavissich, J., I. Vargas, B. Gonzalez, P. Pasten, and G. Pizarro. 2010. Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. J. Appl. Microbiol. 109: 771-782. https://doi.org/10.1111/j.1365-2672.2010.04704.x
  54. Plante, C. J., K. M. Coe, and R. G. Plante. 2008. Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats. Appl. Environ. Microbiol. 74: 5093-5099. https://doi.org/10.1128/AEM.02734-07
  55. Rademaker, J., F. Louws, J. Versalovic, F. Bruijn, G. Kowalchuk, I. Head, et al. 2004. Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting, pp. 611-643. In G. Kowalchuk, F. J. de Bruijn, I. M Head, A. D. L Akkermans, and J. D. van Elsas (eds.). Molecular Microbial Ecology Manual, Volumes 1 and 2, 2nd Ed. Kluwer Academic Publishers, Dordrecht.
  56. Rahman, P. K. S. M. and E. E. Gakpe. 2008. Production, characterisation and applications of biosurfactants - Review. Biotechnology 7: 360-370. https://doi.org/10.3923/biotech.2008.360.370
  57. Rashedi, H., E. Jamshidi, M. M. Assadi, and B. Bonakdarpour. 2005. Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil. Int. J. Environ. Sci. Technol. 2: 122-127.
  58. Ron, E. and E. Rosenberg. 2010. Role of biosurfactants, pp. 2515-2520. In K. N. Timmis (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin Heidelberg.
  59. Rouse, J. D., D. A. Sabatini, J. M. Suflita, and J. H. Harwell. 1994. Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Sci. Technol. 24: 325-370. https://doi.org/10.1080/10643389409388471
  60. Sahoo, S., S. Datta, D. Biswas, and R. Banik Choudhury. 2010. Biosurfactant production from n-paraffins by an air isolate Pseudomonas aeruginosa OCD1. J. Oleo Sci. 59: 601-605. https://doi.org/10.5650/jos.59.601
  61. Salter, I., M. V. Zubkov, P. E. Warwick, and P. H. Burkill. 2009. Marine bacterioplankton can increase evaporation and gas transfer by metabolizing insoluble surfactants from the air-seawater interface. FEMS Microbiol. Lett. 294: 225-231. https://doi.org/10.1111/j.1574-6968.2009.01572.x
  62. Sayler, G. S., S. W. Hooper, A. C. Layton, and J. M. H. King. 1990. Catabolic plasmids of environmental and ecological significance. Microb. Ecol. 19: 1-20. https://doi.org/10.1007/BF02015050
  63. Sivapathasekaran, C., S. Mukherjee, R. Sen, B. Bhattacharya, and R. Samanta. 2011. Single step concomitant concentration, purification and characterization of two families of lipopeptides of marine origin. Bioprocess Biosyst. Eng. 34: 339-346. https://doi.org/10.1007/s00449-010-0476-9
  64. Soberon-Chavez, G., F. Lepine, and E. Deziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68: 718-725. https://doi.org/10.1007/s00253-005-0150-3
  65. Sun, N., H. Wang, Y. Chen, S. Lu, and Y. Xiong. 2008. Effect of surfactant SDS, Tween 80, Triton X-100 and rhamnolipid on biodegradation of hydrophobic organic pollutants, pp. 4730-4734. In IEEE International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China.
  66. Takenaka, S., T. Tonoki, K. Taira, S. Murakami, and K. Aoki. 2007. Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Appl. Environ. Microbiol. 73: 1797. https://doi.org/10.1128/AEM.02426-06
  67. Tapilatu, Y., M. Acquaviva, C. Guigue, G. Miralles, J. C. Bertrand, and P. Cuny. 2010. Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett. Appl. Microbiol. 50: 234-236. https://doi.org/10.1111/j.1472-765X.2009.02766.x
  68. Thaniyavarn, J., A. Chongchin, N. Wanitsuksombut, S. Thaniyavarn, P. Pinphanichakarn, N. Leepipatpiboon, et al. 2006. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 52: 215-222. https://doi.org/10.2323/jgam.52.215
  69. Tiehm, A. 1994. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60: 258.
  70. Van Hamme, J. D., A. Singh, and O. P. Ward. 2006. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 24: 604-620. https://doi.org/10.1016/j.biotechadv.2006.08.001
  71. Vasileva-Tonkova, E. and V. Gesheva. 2007. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr. Microbiol. 54: 136-141. https://doi.org/10.1007/s00284-006-0345-6
  72. Viramontes-Ramos, S., M. Portillo-Ruiz, M. Ballinas-Casarrubias, J. Torres-Munoz, B. Rivera-Chavira, and G. Nevarez-Moorillon. 2010. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Braz. J. Microbiol. 41: 668-675. https://doi.org/10.1590/S1517-83822010000300017
  73. Walczak, M., W. Donderski, Z. Mudryk, and P. Skorczewski. 2000. Aromatic hydrocarbons decomposition by neustonic bacteria. Pol. J. Environ. Stud. 9: 471-474.
  74. Walter, V., C. Syldatk, and R. Hausmann. 2010. Screening concepts for the isolation of biosurfactant producing microorganisms, pp. 1-13. In R. Sen (ed.). Biosurfactants. Springer Science+ Business Media, Berlin, Heidelberg.
  75. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  76. White, G. F., N. J. Russell, and M. J. Day. 1985. A survey of sodium dodecyl sulphate (SDS) resistance and alkylsulphatase production in bacteria from clean and polluted river sites. Environ. Pollut. A 37: 1-11. https://doi.org/10.1016/0143-1471(85)90020-0
  77. Willumsen, P., U. Karlson, and P. Pritchard. 1998. Response of fluoranthene-degrading bacteria to surfactants. Appl. Microbiol. Biotechnol. 50: 475-483. https://doi.org/10.1007/s002530051323
  78. Wouther, H. and B. Dick. 2002. Rhamnolipids stimulate uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 68: 4502-4508. https://doi.org/10.1128/AEM.68.9.4502-4508.2002
  79. Wurl, O., L. Miller, R. Rottgers, and S. Vagle. 2009. The distribution and fate of surface-active substances in the seasurface microlayer and water column. Mar. Chem. 115: 1-9. https://doi.org/10.1016/j.marchem.2009.04.007
  80. Wurl, O. and J. P. Obbard. 2004. A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 48: 1016-1030. https://doi.org/10.1016/j.marpolbul.2004.03.016
  81. Youssef, N. H., K. E. Duncan, D. P. Nagle, K. N. Savage, R. M. Knapp, and M. J. McInerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347. https://doi.org/10.1016/j.mimet.2003.11.001
  82. Yuan, S., S. Wei, and B. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463-1468. https://doi.org/10.1016/S0045-6535(99)00522-6

Cited by

  1. SELECTIVE CULTURES FOR THE ISOLATION OF BIOSURFACTANT PRODUCING BACTERIA: COMPARISON OF DIFFERENT COMBINATIONS OF ENVIRONMENTAL INOCULA AND HYDROPHOBIC CARBON SOURCES vol.43, pp.3, 2012, https://doi.org/10.1080/10826068.2012.719848
  2. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process vol.8, pp.3, 2012, https://doi.org/10.1007/s11783-014-0647-z
  3. Photodynamic Inactivation of Bacterial and Yeast Biofilms With a Cationic Porphyrin vol.90, pp.6, 2012, https://doi.org/10.1111/php.12331
  4. An Interlaboratory Comparison of Sizing and Counting of Subvisible Particles Mimicking Protein Aggregates vol.104, pp.2, 2012, https://doi.org/10.1002/jps.24287
  5. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.01299
  6. Sequential Combined Effect of Phages and Antibiotics on the Inactivation of Escherichia coli vol.6, pp.4, 2012, https://doi.org/10.3390/microorganisms6040125
  7. Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP1016‐20 vol.174, pp.3, 2012, https://doi.org/10.1111/aab.12495
  8. Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study vol.7, pp.9, 2019, https://doi.org/10.3390/microorganisms7090286
  9. Genome analysis of deep sea piezotolerant Nesiotobacter exalbescens COD22 and toluene degradation studies under high pressure condition vol.9, pp.1, 2012, https://doi.org/10.1038/s41598-019-55115-9