References
- Abouseoud, M., A. Yataghene, A. Amrane, and R. Maachi. 2010. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J. Hazard. Mater. 180: 131-136. https://doi.org/10.1016/j.jhazmat.2010.04.003
- Agogue, H., E. O. Casamayor, M. Bourrain, I. Obernosterer, F. Joux, G. J. Herndl, and P. Lebaron. 2005. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol. Ecol. 54: 269-280. https://doi.org/10.1016/j.femsec.2005.04.002
- Amirmozafari, N., F. Malekzadeh, F. Hosseini, and N. Ghaemi. 2007. Isolation and identification of anionic surfactant degrading bacteria from activated sludge. Iran. Biomed. J. 11: 81-86.
- Attaway, H. H. and M. G. Schmidt. 2002. Tandem biodegradation of BTEX components by two Pseudomonas sp. Curr. Microbiol. 45: 30-36. https://doi.org/10.1007/s00284-001-0053-1
- Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 26: 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6
- Barbieri, P., L. Palladino, P. Gennaro, and E. Galli. 1993. Alternative pathways for o-xylene or m-xylene and p-xylene degradation in a Pseudomonas stutzeri strain. Biodegradation 4: 71-80. https://doi.org/10.1007/BF00702323
- Batista, S., A. Mounteer, F. Amorim, and M. Totola. 2006. Isolation and characterization of biosurfactant/bioemulsifierproducing bacteria from petroleum contaminated sites. Bioresource Technol. 97: 868-875. https://doi.org/10.1016/j.biortech.2005.04.020
- Bruheim, P., H. Bredholt, and K. Eimhjellen. 1999. Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil. Appl. Environ. Microbiol. 65: 1658-1661.
- Burch, A. Y., B. K. Shimada, P. J. Browne, and S. E. Lindow. 2010. Novel high-throughput detection method to assess bacterial surfactant production. Appl. Environ. Microbiol. 76: 5363-5372. https://doi.org/10.1128/AEM.00592-10
- Caiazza, N. C., R. M. Q. Shanks, and G. O'Toole. 2005. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J. Bacteriol. 187: 7351. https://doi.org/10.1128/JB.187.21.7351-7361.2005
-
Cebron, A., M. Norini, T. Beguiristain, and C. Leyval. 2008. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-
$RHD{\alpha}$ ) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiol. Methods 73: 148-159. https://doi.org/10.1016/j.mimet.2008.01.009 - Chang, M., T. Holoman, and H. Yi. 2008. Molecular characterization of surfactant-driven microbial community changes in anaerobic phenanthrene-degrading cultures under methanogenic conditions. Biotechnol. Lett. 30: 1595-1601. https://doi.org/10.1007/s10529-008-9731-4
- Chen, C. Y., S. C. Baker, and R. C. Darton. 2007. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J. Microbiol. Methods 70: 503-510. https://doi.org/10.1016/j.mimet.2007.06.006
- Coelho, F. J. R. C., S. Sousa, L. Santos, A. L. Santos, A. Almeida, N. C. M. Gomes, and A. Cunha. 2011. Exploring hydrocarbonoclastic bacterial communities in the estuarine surface microlayer. Aquat. Microb. Ecol. 64: 185-195. https://doi.org/10.3354/ame01526
- Davey, M. E., N. C. Caiazza, and G. A. O'Toole. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185: 1027-1036. https://doi.org/10.1128/JB.185.3.1027-1036.2003
- De Souza, M., C. Huang, N. Chee, and N. Terry. 1999. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209: 259-263. https://doi.org/10.1007/s004250050630
- Dias, J. M., J. Lopes, and I. Dekeyser. 1999. Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanol. Acta 22: 473-485. https://doi.org/10.1016/S0399-1784(00)87681-1
- Edlund, A. and J. K. Jansson. 2008. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrenedegrading bacteria in phenanthrene-enriched polluted baltic sea sediments. FEMS Microbiol. Ecol. 65: 513-525. https://doi.org/10.1111/j.1574-6941.2008.00513.x
- Franklin, M. P., I. R. McDonald, D. G. Bourne, N. J. P. Owens, R. C. U. Goddard, and J. C. Murrell. 2005. Bacterial diversity in the bacterioneuston (sea surface microlayer): The bacterioneuston through the looking glass. Environ. Microbiol. 7: 723-736. https://doi.org/10.1111/j.1462-2920.2004.00736.x
- Gaze, W., N. Abdouslam, P. Hawkey, and E. Wellington. 2005. Incidence of Class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob. Agents Chemother. 49: 1802. https://doi.org/10.1128/AAC.49.5.1802-1807.2005
- Gnanamani, A., V. Kavitha, N. Radhakrishnan, G. Sekaran, G. S. Rajakumar, and A. Mandal. 2010. Microbial biosurfactants and hydrolytic enzymes mediate in situ development of stable supra-molecular assemblies in fatty acids released from triglycerides. Colloids. Surf. B Biointerfaces 78: 200-207. https://doi.org/10.1016/j.colsurfb.2010.03.001
- Godfrey, S. A. C., J. W. Marshall, and J. D. Klena. 2001. Genetic characterization of Pseudomonas 'NZI7' - a novel pathogen that results in a brown blotch disease of Agaricus bisporus. J. Appl. Microbiol. 91: 412-420. https://doi.org/10.1046/j.1365-2672.2001.01398.x
- Gomes, N., L. Borges, R. Paranhos, F. Pinto, E. Krogerrecklenfort, L. Mendonça-Hagler, and K. Smalla. 2007. Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl. Environ. Microbiol. 73: 7392. https://doi.org/10.1128/AEM.01099-07
- Gomes, N., I. A. Kosheleva, W. R. Abraham, and K. Smalla. 2005. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol. Ecol. 54: 21-33. https://doi.org/10.1016/j.femsec.2005.02.005
- Guerra-Santos, L., O. Kappeli, and A. Fiechter. 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301.
- Hale, M. S. and J. G. Mitchell. 1997. Sea surface microlayer and bacterioneuston spreading dynamics. Mar. Ecol. Prog. Ser. 147: 269-276.
- Harayama, S., H. Kishira, Y. Kasai, and K. Shutsubo. 1999. Petroleum biodegradation in marine environments. J. Mol. Microbiol. Biotechnol. 1: 63-70.
- Harvey, G. W. and L. A. Burzell. 1972. A simple microlayer method for small samples. Limnol. Oceanogr. 17: 156-160. https://doi.org/10.4319/lo.1972.17.1.0156
- Henriques, I. S., A. Almeida, A. Cunha, and A. Correia. 2004. Molecular sequence analysis of prokaryotic diversity in the middle and outer sections of the Portuguese estuary Ria de Aveiro. FEMS Microbiol. Ecol. 49: 269-279. https://doi.org/10.1016/j.femsec.2004.04.003
- Hoyle, B. D., J. Jass, and J. W. Costerton. 1990. The biofilm glycocalyx as a resistance factor. J. Antimicrob. Chemother. 26: 1-2.
- Hrenovic, J. and T. Ivankovic. 2007. Toxicity of anionic and cationic surfactant to Acinetobacter junii in pure culture. Cent. Eur. J. Biol. 2: 405-414. https://doi.org/10.2478/s11535-007-0029-7
- Hubert, C., Y. Shen, and G. Voordouw. 1999. Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Appl. Environ. Microbiol. 65: 3064.
- Ishikawa, S., Y. Matsumura, F. Yoshizako, and T. Tsuchido. 2002. Characterization of a cationic surfactant resistant mutant isolated spontaneously from Escherichia coli. J. Appl. Microbiol. 92: 261-268. https://doi.org/10.1046/j.1365-2672.2002.01526.x
- Janek, T., M. Lukaszewicz, T. Rezanka, and A. Krasowska. 2010. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol. 101: 6118-6123. https://doi.org/10.1016/j.biortech.2010.02.109
- Joveiæ, B., J. Begovi, J. Lozo, L. Topisirovi, and M. Koji. 2009. Dynamics of sodium dodecyl sulfate utilization and antibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch. Biol. Sci. 61: 159-164. https://doi.org/10.2298/ABS0902159J
- Kebbouche-Gana, S., M. Gana, S. Khemili, F. Fazouane-Naimi, N. Bouanane, M. Penninckx, and H. Hacene. 2009. Isolation and characterization of halophilic Archaea able to produce biosurfactants. J. Ind. Microbiol. Biotechnol. 36: 727-738. https://doi.org/10.1007/s10295-009-0545-8
- Kostal, J., M. Suchanek, H. Klierova, K. Demnerova, B. Kralova, and D. L. McBeth. 1998. Pseudomonas C12B, an SDS degrading strain, harbours a plasmid coding for degradation of medium chain length n-alkanes. Int. Biodeterior. Biodegradation 42: 221-228. https://doi.org/10.1016/S0964-8305(98)00053-5
- Kozarac, Z., D. Risovic, S. Frka, and D. Mobius. 2005. Reflection of light from the air/water interface covered with sea-surface microlayers. Mar. Chem. 96: 99-113. https://doi.org/10.1016/j.marchem.2004.12.003
- Lacal, J., F. Munoz-Martinez, J.-A. Reyes-Darias, E. Duque, M. Matilla, A. Segura, et al. 2011. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ. Microbiol. 13: 1733-1744. https://doi.org/10.1111/j.1462-2920.2011.02493.x
- Lakshmipathy, T. D., A. S. A. Prasad, and K. Kannabiran. 2010. Production of biosurfactant and heavy metal resistance activity of Streptomyces sp. VITDDK3 - a novel halo tolerant actinomycetes isolated from saltpan soil. Adv. Biol. Res. 4: 108-115.
- Li, A., M. Xu, W. Sun, and G. Sun. 2011. Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Appl. Biochem. Biotechnol. 163: 600-611. https://doi.org/10.1007/s12010-010-9066-1
- Li, D., T. Yu, Y. Zhang, M. Yang, Z. Li, M. Liu, and R. Qi. 2010. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl. Environ. Microbiol. 76: 3444- 3451. https://doi.org/10.1128/AEM.02964-09
- Lin, Q. and W. Jianlong. 2010. Biodegradation characteristics of quinoline by Pseudomonas putida. Bioresour. Technol. 101: 7683-7686. https://doi.org/10.1016/j.biortech.2010.05.026
- Luz, A. P., V. H. Pellizari, L. G. Whyte, and C. W. Greer. 2004. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can. J. Microbiol. 50: 323-333. https://doi.org/10.1139/w04-008
- Malik, A., P. Kimchhayarasy, and K. Kakii. 2005. Effect of surfactants on stability of Acinetobacter johnsonii S35 and Oligotropha carboxidovorans S23 coaggregates. FEMS Microbiol. Ecol. 51: 313-321. https://doi.org/10.1016/j.femsec.2004.09.005
- Maneerat, S. and K. Phetrong. 2007. Isolation of biosurfactantproducing marine bacteria and characteristics of selected biosurfactant. J. Sci. Technol. 29: 781-791.
- Mariani, L., D. De Pascale, O. Faraponova, A. Tornambe, A. Sarni, S. Giuliani, et al. 2006. The use of a test battery in marine ecotoxicology: The acute toxicity of sodium dodecyl sulfate. Environ. Toxicol. 21: 373-379. https://doi.org/10.1002/tox.20204
- Mercade, M. E., L. Monleon, C. Andres, I. Rodon, E. Martinez, M. J. Espuny, and A. Manresa. 1996. Screening and selection of surfactant-producing bacteria from waste lubricating oil. J. Appl. Microbiol. 81: 161-166. https://doi.org/10.1111/j.1365-2672.1996.tb04494.x
- Molina, M., N. Gonzalez, L. Bautista, R. Sanz, R. Simarro, I. Sanchez, and J. Sanz. 2009. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation 20: 789-800. https://doi.org/10.1007/s10532-009-9267-x
- Mulkins-Phillips, G. and J. E. Stewart. 1974. Effect of four dispersants on biodegradation and growth of bacteria on crude oil. Appl. Environ. Microbiol. 28: 547-552.
- Nikaido, H. 2001. Preventing drug access to targets: Cell surface permeability barriers and active efflux in bacteria. Semin. Cell. Dev. Biol. 12: 215-223. https://doi.org/10.1006/scdb.2000.0247
- Park, Y.-D., H. Yi, K. S. Baik, C. N. Seong, K. S. Bae, E. Y. Moon, and J. Chun. 2006. Pseudomonas segetis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 56: 2593-2595. https://doi.org/10.1099/ijs.0.63792-0
- Pavissich, J., I. Vargas, B. Gonzalez, P. Pasten, and G. Pizarro. 2010. Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. J. Appl. Microbiol. 109: 771-782. https://doi.org/10.1111/j.1365-2672.2010.04704.x
- Plante, C. J., K. M. Coe, and R. G. Plante. 2008. Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats. Appl. Environ. Microbiol. 74: 5093-5099. https://doi.org/10.1128/AEM.02734-07
- Rademaker, J., F. Louws, J. Versalovic, F. Bruijn, G. Kowalchuk, I. Head, et al. 2004. Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting, pp. 611-643. In G. Kowalchuk, F. J. de Bruijn, I. M Head, A. D. L Akkermans, and J. D. van Elsas (eds.). Molecular Microbial Ecology Manual, Volumes 1 and 2, 2nd Ed. Kluwer Academic Publishers, Dordrecht.
- Rahman, P. K. S. M. and E. E. Gakpe. 2008. Production, characterisation and applications of biosurfactants - Review. Biotechnology 7: 360-370. https://doi.org/10.3923/biotech.2008.360.370
- Rashedi, H., E. Jamshidi, M. M. Assadi, and B. Bonakdarpour. 2005. Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil. Int. J. Environ. Sci. Technol. 2: 122-127.
- Ron, E. and E. Rosenberg. 2010. Role of biosurfactants, pp. 2515-2520. In K. N. Timmis (ed.). Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin Heidelberg.
- Rouse, J. D., D. A. Sabatini, J. M. Suflita, and J. H. Harwell. 1994. Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Sci. Technol. 24: 325-370. https://doi.org/10.1080/10643389409388471
- Sahoo, S., S. Datta, D. Biswas, and R. Banik Choudhury. 2010. Biosurfactant production from n-paraffins by an air isolate Pseudomonas aeruginosa OCD1. J. Oleo Sci. 59: 601-605. https://doi.org/10.5650/jos.59.601
- Salter, I., M. V. Zubkov, P. E. Warwick, and P. H. Burkill. 2009. Marine bacterioplankton can increase evaporation and gas transfer by metabolizing insoluble surfactants from the air-seawater interface. FEMS Microbiol. Lett. 294: 225-231. https://doi.org/10.1111/j.1574-6968.2009.01572.x
- Sayler, G. S., S. W. Hooper, A. C. Layton, and J. M. H. King. 1990. Catabolic plasmids of environmental and ecological significance. Microb. Ecol. 19: 1-20. https://doi.org/10.1007/BF02015050
- Sivapathasekaran, C., S. Mukherjee, R. Sen, B. Bhattacharya, and R. Samanta. 2011. Single step concomitant concentration, purification and characterization of two families of lipopeptides of marine origin. Bioprocess Biosyst. Eng. 34: 339-346. https://doi.org/10.1007/s00449-010-0476-9
- Soberon-Chavez, G., F. Lepine, and E. Deziel. 2005. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68: 718-725. https://doi.org/10.1007/s00253-005-0150-3
- Sun, N., H. Wang, Y. Chen, S. Lu, and Y. Xiong. 2008. Effect of surfactant SDS, Tween 80, Triton X-100 and rhamnolipid on biodegradation of hydrophobic organic pollutants, pp. 4730-4734. In IEEE International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China.
- Takenaka, S., T. Tonoki, K. Taira, S. Murakami, and K. Aoki. 2007. Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Appl. Environ. Microbiol. 73: 1797. https://doi.org/10.1128/AEM.02426-06
- Tapilatu, Y., M. Acquaviva, C. Guigue, G. Miralles, J. C. Bertrand, and P. Cuny. 2010. Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett. Appl. Microbiol. 50: 234-236. https://doi.org/10.1111/j.1472-765X.2009.02766.x
- Thaniyavarn, J., A. Chongchin, N. Wanitsuksombut, S. Thaniyavarn, P. Pinphanichakarn, N. Leepipatpiboon, et al. 2006. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 52: 215-222. https://doi.org/10.2323/jgam.52.215
- Tiehm, A. 1994. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60: 258.
- Van Hamme, J. D., A. Singh, and O. P. Ward. 2006. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 24: 604-620. https://doi.org/10.1016/j.biotechadv.2006.08.001
- Vasileva-Tonkova, E. and V. Gesheva. 2007. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr. Microbiol. 54: 136-141. https://doi.org/10.1007/s00284-006-0345-6
- Viramontes-Ramos, S., M. Portillo-Ruiz, M. Ballinas-Casarrubias, J. Torres-Munoz, B. Rivera-Chavira, and G. Nevarez-Moorillon. 2010. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Braz. J. Microbiol. 41: 668-675. https://doi.org/10.1590/S1517-83822010000300017
- Walczak, M., W. Donderski, Z. Mudryk, and P. Skorczewski. 2000. Aromatic hydrocarbons decomposition by neustonic bacteria. Pol. J. Environ. Stud. 9: 471-474.
- Walter, V., C. Syldatk, and R. Hausmann. 2010. Screening concepts for the isolation of biosurfactant producing microorganisms, pp. 1-13. In R. Sen (ed.). Biosurfactants. Springer Science+ Business Media, Berlin, Heidelberg.
- Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
- White, G. F., N. J. Russell, and M. J. Day. 1985. A survey of sodium dodecyl sulphate (SDS) resistance and alkylsulphatase production in bacteria from clean and polluted river sites. Environ. Pollut. A 37: 1-11. https://doi.org/10.1016/0143-1471(85)90020-0
- Willumsen, P., U. Karlson, and P. Pritchard. 1998. Response of fluoranthene-degrading bacteria to surfactants. Appl. Microbiol. Biotechnol. 50: 475-483. https://doi.org/10.1007/s002530051323
- Wouther, H. and B. Dick. 2002. Rhamnolipids stimulate uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 68: 4502-4508. https://doi.org/10.1128/AEM.68.9.4502-4508.2002
- Wurl, O., L. Miller, R. Rottgers, and S. Vagle. 2009. The distribution and fate of surface-active substances in the seasurface microlayer and water column. Mar. Chem. 115: 1-9. https://doi.org/10.1016/j.marchem.2009.04.007
- Wurl, O. and J. P. Obbard. 2004. A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 48: 1016-1030. https://doi.org/10.1016/j.marpolbul.2004.03.016
- Youssef, N. H., K. E. Duncan, D. P. Nagle, K. N. Savage, R. M. Knapp, and M. J. McInerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347. https://doi.org/10.1016/j.mimet.2003.11.001
- Yuan, S., S. Wei, and B. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463-1468. https://doi.org/10.1016/S0045-6535(99)00522-6
Cited by
- SELECTIVE CULTURES FOR THE ISOLATION OF BIOSURFACTANT PRODUCING BACTERIA: COMPARISON OF DIFFERENT COMBINATIONS OF ENVIRONMENTAL INOCULA AND HYDROPHOBIC CARBON SOURCES vol.43, pp.3, 2012, https://doi.org/10.1080/10826068.2012.719848
- Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process vol.8, pp.3, 2012, https://doi.org/10.1007/s11783-014-0647-z
- Photodynamic Inactivation of Bacterial and Yeast Biofilms With a Cationic Porphyrin vol.90, pp.6, 2012, https://doi.org/10.1111/php.12331
- An Interlaboratory Comparison of Sizing and Counting of Subvisible Particles Mimicking Protein Aggregates vol.104, pp.2, 2012, https://doi.org/10.1002/jps.24287
- Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.01299
- Sequential Combined Effect of Phages and Antibiotics on the Inactivation of Escherichia coli vol.6, pp.4, 2012, https://doi.org/10.3390/microorganisms6040125
- Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP1016‐20 vol.174, pp.3, 2012, https://doi.org/10.1111/aab.12495
- Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study vol.7, pp.9, 2019, https://doi.org/10.3390/microorganisms7090286
- Genome analysis of deep sea piezotolerant Nesiotobacter exalbescens COD22 and toluene degradation studies under high pressure condition vol.9, pp.1, 2012, https://doi.org/10.1038/s41598-019-55115-9