References
- Eaton, A. D., L. S. Clesceri, and A. E. Greenberg (Eds.). 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. pp. 5-10-5-16. American Public Health Association, Washington, DC.
- Chang, I. S., H. Moon, J. K. Jang, and B. H. Kim. 2005. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 20: 1856-1859. https://doi.org/10.1016/j.bios.2004.06.003
- Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-324. https://doi.org/10.1016/S0956-5663(02)00110-0
- He, Z., J. Kan, Y. Wang, Y. Huang, F. Mansfeld, and K. H. Nealson. 2009. Electricity production coupled to ammonium in a microbial fuel cell. Environ. Sci. Technol. 43: 3391-3397. https://doi.org/10.1021/es803492c
- Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
- Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131.
- Kim, B. H., T. Ikeda, H. S. Park, H. J. Kim, M. S. Hyun, K. Kano, et al. 1999. Electrochemical activity of a Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13: 475-478. https://doi.org/10.1023/A:1008993029309
- Kim, B. H. and G. M. Gadd. 2008. Bacterial Physiology and Metabolism, 1st Ed., pp. 299-302. Cambridge University Press, Cambridge.
- Nam, J. Y., H. W. Kim, and H. S. Hang. 2010. Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J. Power Sources 195: 6428-6433. https://doi.org/10.1016/j.jpowsour.2010.03.091
- Kim, H. W., J. Y. Nam, and H. S. Hang. 2011. Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. J. Power Sources 196: 6210-6213. https://doi.org/10.1016/j.jpowsour.2011.03.061
- Larminie, J. and A. Dicks. 2000. Fuel Cell Systems Explained, 1st Ed., pp. 66-68. John Wiley and Sons, West Sussex.
- Logan, B. E., B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192. https://doi.org/10.1021/es0605016
- Sukkasem, C., S. Xu, S. Part, P. Boonsawang, and H. Lui. 2008. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res. 42: 4743-4750. https://doi.org/10.1016/j.watres.2008.08.029
Cited by
- Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용 vol.40, pp.4, 2012, https://doi.org/10.4014/kjmb.1210.10007
- 스텐철사를 전극으로 이용하는 미생물연료전지의 전류 발생 vol.36, pp.11, 2012, https://doi.org/10.4491/ksee.2014.36.11.753
- Effective ammonium removal by anaerobic oxidation in microbial fuel cells vol.36, pp.6, 2012, https://doi.org/10.1080/09593330.2014.960481
- Effect of Nitrite and Nitrate Concentrations on the Performance of AFB-MFC Enriched with High-Strength Synthetic Wastewater vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/798397
- 가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향 vol.37, pp.10, 2012, https://doi.org/10.4491/ksee.2015.37.10.578
- Improved Electricity Generation by a Microbial Fuel Cell after Pretreatment of Ammonium and Nitrate in Livestock Wastewater with Microbubbles and a Catalyst vol.26, pp.11, 2012, https://doi.org/10.4014/jmb.1608.08041