DOI QR코드

DOI QR Code

Simultaneous Quantification of Cyanobacteria and Microcystis spp. Using Real-Time PCR

  • Oh, Kyoung-Hee (Department of Environmental Engineering, Chungbuk National University) ;
  • Jeong, Dong-Hwan (Water Environmental Chemistry Division, Geum-River Environment Research Center) ;
  • Shin, Seung-Hee (Department of Environmental Engineering, Chungbuk National University) ;
  • Cho, Young-Cheol (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2011.09.21
  • Accepted : 2011.11.14
  • Published : 2012.02.28

Abstract

In order to develop a protocol to quantify cyanobacteria and Microcystis simultaneously, the primers and probe were designed from the conserved regions of 16S rRNA gene sequences of cyanobacteria and Microcystis, respectively. Probe match analysis of the Ribosomal Database Project showed that the primers matched with over 97% of cyanobacterial 16S rRNA genes, indicating these can be used to amplify cyanobacteria specifically. The TaqMan probe, which is located between two primers, matched with 98.2% of sequences in genus GpXI, in which most Microcystis strains are included. The numbers of cyanobacterial genes were estimated with the emission of SYBR Green from the amplicons with two primers, whereas those of Microcystis spp. were measured from the fluorescence of CAL Fluor Gold 540 emitted by exonuclease activity of Taq DNA polymerase in amplification. It is expected that this method enhances the accuracy and reduces the time to count cyanobacteria and potential toxigenic Microcystis spp. in aquatic environmental samples.

Keywords

References

  1. Ahn, C. Y., A. S. Chung, and H. M. Oh. 2002. Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia 474: 117-124. https://doi.org/10.1023/A:1016573225220
  2. Ahn, C. Y., H. S. Kim, B. D. Yoon, and H. M. Oh. 2003. Influence of rainfall on cyanobacterial bloom in Daechung Reservoir. Korean J. Limnol. 36: 413-419.
  3. Ahn, C. Y., S. H. Joung, C. S. Park, H. S. Kim, B. D. Yoon, and H. M. Oh. 2008. Comparison of sampling and analytical methods for monitoring of cyanobacteria-dominated surface waters. Hydrobiologia 596: 413-421. https://doi.org/10.1007/s10750-007-9125-y
  4. American Public Health Association. 2005. Standard Methods for the Examination of Water and Wastewater, 21st Ed. American Public Health Association, Washington, DC.
  5. Baker, J. A., B. Entsch, B. A. Neilan, and D. B. McKay. 2002. Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl. Environ. Microbiol. 68: 6070-6076. https://doi.org/10.1128/AEM.68.12.6070-6076.2002
  6. Becker, S., M. Fahrbach, P. Boger, and A. Ernst. 2002. Quantitative tracing, by Taq nuclease assays, of a Synechococcus ecotype in a highly diversified natural population. Appl. Environ. Microbiol. 68: 4486-4494. https://doi.org/10.1128/AEM.68.9.4486-4494.2002
  7. Carmichael, W. W. 1996. Toxic Microcystis and the environment, pp. 1-11. In M. F. Watanabe, K. Harada, W. W. Carmichael, and K. Fujii (eds.). Toxic Microcystis. CRC Press, Boca Raton, FL.
  8. Chorus, I., I. R. Falconer, H. J. Salas, and J. Bartram. 2000. Health risks caused by freshwater cyanobacteria in recreational waters. J. Toxicol. Environ. Health B Crit. Rev. 3: 323-347. https://doi.org/10.1080/109374000436364
  9. Church, M. J., C. M. Short, B. D. Jenkins, D. M. Karl, and J. P. Zehr. 2005. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71: 5362-5370. https://doi.org/10.1128/AEM.71.9.5362-5370.2005
  10. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed- Mohideen, D. M. McGarrell, et al. 2007. The ribosomal database project (RDP-II): Introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35(Database issue): D169-D172. https://doi.org/10.1093/nar/gkl889
  11. Elshahed, M. S., N. H. Youssef, A. M. Spain, C. Sheik, F. Z. Najar, L. O. Sukharnikov, et al. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl. Environ. Microbiol. 74: 5422-5428. https://doi.org/10.1128/AEM.00410-08
  12. Falconer, I., J. Bartram, I. Chorus, T. Kuiper-Goodman, H. Utkilen, M. Burch, and G. A. Codd. 1999. Safe levels and safe practices, pp. 161-182. In I. Chorus and J. Bartram (eds.). Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management. Spon Press, London, UK.
  13. Foulds, I. V., A. Granacki, C. Xiao, U. J. Krull, A. Castle, and P. A. Horgen. 2002. Quantification of microcystin-producing cyanobacteria and E. coli in water by 5'-nuclease PCR. J. Appl. Microbiol. 93: 825-834. https://doi.org/10.1046/j.1365-2672.2002.01772.x
  14. Han, A. W., K. H. Oh, W. H. Jheong, and Y. C. Cho. 2010. Establishment of an axenic culture of microcystin-producing Microcystis aeruginosa isolated from a Korean reservoir. J. Microbiol. Biotechnol. 20: 1152-1155. https://doi.org/10.4014/jmb.1003.03028
  15. Kibbe, W. A. 2007. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 35: W43-W46.
  16. Kim, B., H. S. Kim, H. D. Park, K. Choi, and J. G. Park. 1999. Microcystin content of cyanobacterial cells in Korean reservoirs and their toxicity. Korean J. Limnol. 32: 288-294.
  17. Klappenbach, J. A., J. M. Dunbar, and T. M. Schmidt. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66: 1328-1333. https://doi.org/10.1128/AEM.66.4.1328-1333.2000
  18. Kondo, R., G. Kagiya, S. Hiroishi, and M. Watanabe. 2000. Genetic typing of a bloom-forming cyanobacterial genus Microcystis in Japan using 16S rRNA gene sequence analysis. Plankton Biol. Ecol. 47: 1-6.
  19. Kurmayer, R. and T. Kutzenberger. 2003. Application of realtime PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl. Environ. Microbiol. 69: 6723-6730. https://doi.org/10.1128/AEM.69.11.6723-6730.2003
  20. Lachnit, T., D. Meske, M. Wahl, T. Harder, and R. Schmitz. 2011. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol. 13: 655-665. https://doi.org/10.1111/j.1462-2920.2010.02371.x
  21. Larionov, A., A. Krause, and W. Miller. 2005. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62. https://doi.org/10.1186/1471-2105-6-62
  22. Lee, K. L., W. H. Jheong, J. M. Kim, and H. S. Kim. 2007. Detection of toxigenicity of cyanobacteria by molecular method. Korean J. Limnol. 40: 149-154.
  23. Lesaulnier, C., D. Papamichail, S. McCorkle, B. Ollivier, S. Skiena, S. Taghavi, et al. 2008. Elevated atmospheric $CO_2$ affects soil microbial diversity associated with trembling aspen. Environ. Microbiol. 10: 926-941. https://doi.org/10.1111/j.1462-2920.2007.01512.x
  24. Maatouk, I., N. Bouaich, D. Fontan, and Y. Levi. 2002. Seasonal variation of microcystin concentrations in the Saint- Caprais Reservoir (France) and their removal in a small fullscale treatment plant. Water Res. 36: 2891-2897. https://doi.org/10.1016/S0043-1354(01)00507-3
  25. Malmaeus, J. M., T. Bleckner, H. Markensten, and I. Persson. 2006. Lake phosphorus dynamics and climate warming: A mechanistic approach. Ecol. Model. 190: 1-14. https://doi.org/10.1016/j.ecolmodel.2005.03.017
  26. Mankiewicz, J., J. Komarkova, K. Izydorczyk, T. Jurczak, M. Tarczynska, and M. Zalewski. 2005. Hepatotoxic cyanobacterial blooms in the lakes of northern Poland. Environ. Toxicol. 20: 499-506. https://doi.org/10.1002/tox.20138
  27. Myers, J. L. and L. L. Richardson. 2009. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral. FEMS Microbiol. Ecol. 67: 242-251. https://doi.org/10.1111/j.1574-6941.2008.00619.x
  28. Myers, J. L., R. Sekar, and L. L. Richardson. 2007. Molecular detection and ecological significance of the cyanobacterial genera Geitlerinema and Leptolyngbya in black band disease of corals. Appl. Environ. Microbiol. 73: 5173-5182. https://doi.org/10.1128/AEM.00900-07
  29. Neilan, B. A., D. Jacobs, T. DelDot, L. L. Blackall, P. R. Hawkins, P. T. Cox, and A. E. Goodman. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. System. Bacteriol. 47: 693-697. https://doi.org/10.1099/00207713-47-3-693
  30. Oh, H. M., S. J. Lee, M. H. Jang, and B. D. Yoon. 2000. Microcystin production by Microcystis aeruginosa in a phosphoruslimited chemostat. Appl. Environ. Microbiol. 66: 176-179. https://doi.org/10.1128/AEM.66.1.176-179.2000
  31. Otsuka, S., S. Suda, R. H. Li, M. Watanabe, H. Oyaizu, S. Matsumoto, and M. M. Watanabe. 1998. 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol. Lett. 164: 119-124. https://doi.org/10.1111/j.1574-6968.1998.tb13076.x
  32. Paerl, H. W. 1988. Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnol. Oceanogr. 33: 823-847. https://doi.org/10.4319/lo.1988.33.4_part_2.0823
  33. Park, H. D., B. Kim, E. Kim, and T. Okino. 1998. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environ. Toxicol. Water Qual. 13: 225-234. https://doi.org/10.1002/(SICI)1098-2256(1998)13:3<225::AID-TOX4>3.0.CO;2-9
  34. Rawls, J. F., M. A. Mahowald, R. E. Ley, and J. I. Gordon. 2006. Reciprocal transplants from zebrafish and mice to germfree recipients reveal host habitat selection. Cell 127: 423-433. https://doi.org/10.1016/j.cell.2006.08.043
  35. Rinta-Kanto, J. M., A. J. A. Ouellette, G. L. Boyer, M. R. Twiss, T. B. Bridgeman, and S. W. Wilhelm. 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39: 4198-4205. https://doi.org/10.1021/es048249u
  36. Shin, J. K. and K. J. Cho. 1997. Distribution and population dynamics of Microcystis (Cyanophyta) in the Naktong River. Algae 12: 283-290.
  37. Shirai, M., K. Matsumara, A. Ohotake, Y. Takamura, T. Aida, and M. Nakano. 1989. Development of a solid medium for growth and isolation of axenic microcystin strain (cyanobacteria). Appl. Environ. Microbiol. 55: 2569-2571.
  38. Tarczynska, M., Z. Romanowska-Duda, T. Jurczak, and M. Zalewski. 2001. Toxic cyanobacterial blooms in a drinking water reservoirs - causes, consequences and management strategy. Water Sci. Technol. 1: 237-246.
  39. Zurawell, R. W., H. Chen, J. M. Burke, and E. E. Prepas. 2005. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health B Crit. Rev. 8: 1-37. https://doi.org/10.1080/10937400590889412

Cited by

  1. Quantification of toxigenic Microcystis spp. in freshwaters by quantitative real-time PCR based on the microcystin synthetase A gene vol.51, pp.1, 2012, https://doi.org/10.1007/s12275-013-2354-z
  2. 대청호에 설치된 수중폭기시설이 조류 발생에 미치는 영향 vol.35, pp.4, 2013, https://doi.org/10.4491/ksee.2013.35.4.268
  3. 농업용 저수지 준설토의 처리 공법에 따른 경제성 분석 vol.35, pp.10, 2012, https://doi.org/10.4491/ksee.2013.35.10.756
  4. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir vol.8, pp.2, 2012, https://doi.org/10.1007/s11707-013-0409-4
  5. 대청호 추소 및 추동 수역 퇴적물의 오염도 평가 vol.37, pp.5, 2015, https://doi.org/10.4491/ksee.2015.37.5.277
  6. Bacterial Diversity and Nitrogen Utilization Strategies in the Upper Layer of the Northwestern Pacific Ocean vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.00797
  7. Biodiversity of cyanobacteria and other aquatic microorganisms across a freshwater to brackish water gradient determined by shotgun metagenomic sequencing analysis in the San Francisco Estuary, USA vol.13, pp.9, 2018, https://doi.org/10.1371/journal.pone.0203953