References
- Achal, V., X. Pan, and D. Zhang. 2011. Remediation of coppercontaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol. Eng. 37: 1601-1605. https://doi.org/10.1016/j.ecoleng.2011.06.008
- Achal, V. and X. Pan. 2011. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 62: 894-902. https://doi.org/10.1007/s00284-010-9801-4
- Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
- Achal, V., A. Mukherjee, and M. S. Reddy. 2010. Biocalcification by Sporosarcina pasteurii using corn steep liquor as nutrient source. Ind. Biotechnol. 6: 170-174. https://doi.org/10.1089/ind.2010.6.170
- Brookes, P. C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fert. Soil 19: 269-275. https://doi.org/10.1007/BF00336094
- Casida, L. E. Jr., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. 98: 371-376. https://doi.org/10.1097/00010694-196412000-00004
- Chen, T.-B., Y.-M. Zheng, M. Lei, Z.-C. Huang, H.-T. Wu, H. Chen, et al. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60: 542-551. https://doi.org/10.1016/j.chemosphere.2004.12.072
- Chen, Y. H., X. D. Li, and Z. G. Shen. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57: 187-196. https://doi.org/10.1016/j.chemosphere.2004.05.044
-
Cho, D. H., M. H. Yoo, and E. Y. Kim. 2004. Biosorption of lead (
$Pb^{2+}$ ) from aqueous solution by Rhodotorula aurantiaca. J. Microbiol. Biotechnol. 14: 250-255. - Flora, S. J. S. 2002. Lead exposure: Health effects, prevention and treatment. J. Environ. Biol. 23: 25-41.
- Fritioff, A., L. Kautsky, and M. Greger. 2005. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ. Pollut. 133: 265-274. https://doi.org/10.1016/j.envpol.2004.05.036
- Harrison, R. M., D. P. H. Laxen, and S. J. Wilson. 1981. Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils. Environ. Sci. Technol. 15: 1378- 1383. https://doi.org/10.1021/es00093a013
- Huang, D., G. Zeng, X. Jiang, C. Feng, H. Yu, G. Huang, and H. Liu. 2006. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. J. Hazard. Mater. 134: 268-276. https://doi.org/10.1016/j.jhazmat.2005.11.021
-
Martini, J. E. J. 1996. Gwihabaite - (
$NH_4$ ,K)$NO_3$ , orthorhombic, a new mineral from Gcwihaba Cave, Botswana. Bull. South African Speleological Assoc. 36: 19-21. - Nedwed, T. and D. A. Clifford. 1997. A survey of lead battery recycling sites and soil remediation processes. Waste Manag. 17: 257-269.
- Pan, X., J. Wang, and D. Zhang. 2005. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochem. 40: 2799-2803. https://doi.org/10.1016/j.procbio.2004.12.007
- Pan, X. L. 2009. Micrologically induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment. Res. J. Chem. Environ. 13: 3-4.
-
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of
$CaCO_3$ . Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6 -
Suh, J. H., D. S. Kim, J. W. Yun, and S. K. Song. 1998. Process of
$Pb^{2+}$ accumulation in Saccharomyces cerevisiae. Biotechnol. Lett. 20: 153-156. https://doi.org/10.1023/A:1005376424157 - Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedures for the speciation of particulate trace metals. Anal. Chem. 51: 844-851. https://doi.org/10.1021/ac50043a017
- Wei, B., F. Jiang, X. Li, and S. Mu. 2010. Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ. Monitor. Assess. 160: 33-45. https://doi.org/10.1007/s10661-008-0655-1
- You, Z. X., C. Yang, X. Liu, F. Xue, and X. Y. Zhou. 2010. Lead pollution and its assessment in urban street dust of Guiyang City. Urban Environ. Urban Ecol. 23: 33-36 (in Chinese).
- Zantua, M. I. and J. M. Bremner. 1975. Comparison of methods of assaying urease activity in soils. Soil Biol. Biochem. 7: 291-295 https://doi.org/10.1016/0038-0717(75)90069-3
- Zhang, X. and K. Meng. 1994. Lead content of urban soils in China. J. Environ. Sci. 6: 355-360.
Cited by
- Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP vol.80, pp.15, 2012, https://doi.org/10.1128/aem.01349-14
- Biomineralization of Metal Carbonates by Neurospora crassa vol.48, pp.24, 2012, https://doi.org/10.1021/es5042546
- Lead biotransformation potential of allochthonous Bacillus sp. SKK11 with sesame oil cake extract in mine soil vol.5, pp.67, 2012, https://doi.org/10.1039/c5ra06945a
- CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil vol.17, pp.8, 2012, https://doi.org/10.1111/1462-2920.12954
- Formations of calcium carbonate minerals by bacteria and its multiple applications vol.5, pp.1, 2012, https://doi.org/10.1186/s40064-016-1869-2
- Fungal nanoscale metal carbonates and production of electrochemical materials vol.10, pp.5, 2012, https://doi.org/10.1111/1751-7915.12765
- Complete genome of Arthrobacter alpinus strain R3.8, bioremediation potential unraveled with genomic analysis vol.12, pp.None, 2017, https://doi.org/10.1186/s40793-017-0264-0
- Lead absorption mechanisms in bacteria as strategies for lead bioremediation vol.102, pp.13, 2012, https://doi.org/10.1007/s00253-018-8969-6
- An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal vol.21, pp.2, 2012, https://doi.org/10.1007/s10163-018-0779-5
- Metal and metalloid immobilization by microbiologically induced carbonates precipitation vol.35, pp.4, 2019, https://doi.org/10.1007/s11274-019-2626-9
- Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world vol.103, pp.12, 2012, https://doi.org/10.1007/s00253-019-09861-5
- Bioremediation Methods for the Recovery of Lead-Contaminated Soils: A Review vol.10, pp.10, 2012, https://doi.org/10.3390/app10103528
- Bioremediation of cadmium in a sandy and a clay soil by microbially induced calcium carbonate precipitation after one week incubation vol.34, pp.3, 2012, https://doi.org/10.1080/15324982.2020.1720866
- Desiccation Cracking Behavior of Clayey Soils Treated with Biocement and Bottom Ash Admixture during Wetting-Drying Cycles vol.2674, pp.8, 2020, https://doi.org/10.1177/0361198120924409
- Nanoparticle Accumulation in Microbial Induced Carbonate Precipitation: The Crucial Role of Extracellular Polymeric Substance vol.37, pp.9, 2012, https://doi.org/10.1080/01490451.2020.1786866
- Strength Enhancement and Lead Immobilization of Sand Using Consortia of Bacteria and Blue-Green Algae vol.24, pp.4, 2012, https://doi.org/10.1061/(asce)hz.2153-5515.0000548
- Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique vol.10, pp.21, 2012, https://doi.org/10.3390/app10217568
- Aerobic and anaerobic removal of lead and mercury via calcium carbonate precipitation mediated by statistically optimized nitrate reductases vol.10, pp.None, 2012, https://doi.org/10.1038/s41598-020-60951-1
- Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media vol.10, pp.1, 2012, https://doi.org/10.1038/s41598-020-79904-9
- A critical review on microbial carbonate precipitation via denitrification process in building materials vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1979862
- State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenviron vol.11, pp.4, 2012, https://doi.org/10.3390/cryst11040370
- Insight into the Metabolic Profiles of Pb(II) Removing Microorganisms vol.26, pp.13, 2012, https://doi.org/10.3390/molecules26134008
- Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium vol.777, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2021.146190
- Artificial neural networks applied for solidified soils data prediction: a bibliometric and systematic review vol.38, pp.7, 2012, https://doi.org/10.1108/ec-10-2020-0576
- Seawater Used as a Natural Medium for Curing Bacterially-Treated Concrete with Either Lightweight or Normal Weight Aggregates vol.33, pp.9, 2012, https://doi.org/10.1061/(asce)mt.1943-5533.0003857
- Improving the Strength and Leaching Characteristics of Pb-Contaminated Silt through MICP vol.11, pp.11, 2012, https://doi.org/10.3390/cryst11111303
- Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance vol.402, pp.None, 2021, https://doi.org/10.1016/j.geoderma.2021.115359
- Bioprecipitation of calcium carbonate mediated by ureolysis: A review vol.26, pp.6, 2012, https://doi.org/10.4491/eer.2020.379
- Investigating the potential for microbially induced carbonate precipitation to treat mine waste vol.424, pp.no.pc, 2022, https://doi.org/10.1016/j.jhazmat.2021.127490
- A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation vol.290, pp.None, 2012, https://doi.org/10.1016/j.chemosphere.2021.133229