DOI QR코드

DOI QR Code

Surface Display of Organophosphorus Hydrolase on E. coli Using N-Terminal Domain of Ice Nucleation Protein InaV

  • Khodi, Samaneh (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences) ;
  • Latifi, Ali Mohammad (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences) ;
  • Saadati, Mojtaba (Biology Research Center, Imam Hossein University) ;
  • Mirzaei, Morteza (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences) ;
  • Aghamollaei, Hossein (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences)
  • Received : 2011.04.11
  • Accepted : 2011.10.14
  • Published : 2012.02.28

Abstract

Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.

Keywords

References

  1. Caceres, T. 2010. Fenamiphos and related organophosphorus pesticides: Environmental fate and toxicology. Environ. Contam. Toxicol. 205: 117-162.
  2. Cochet, N. and P. Wildehem. 2000. Ice crystallization by Pseudomonas syringae. Appl. Microbiol. Biotechnol. 54: 153-161 https://doi.org/10.1007/s002530000377
  3. Diaz Casas, A. Z. 2004. Bioremediation of the organophosphate methyl parathion using genetically engineered and native organism. Master Thesis. Texas A & M University.
  4. Efremenko, E. N. and V. S. sergeeva. 2001. Organophosphate hydrolase - an enzyme catalyzing degradation of phosphoruscontaining toxins and pesticides. Russ. Chem. Bull. 50: 1826- 1832. https://doi.org/10.1023/A:1014377912147
  5. Ghanem, E. and F. M. Raushel. 2005. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol. Appl. Pharmacol. 207: 459-470. https://doi.org/10.1016/j.taap.2005.02.025
  6. Harper, L., S. McDaniel, C. Miller, and J. Wild. 1988. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl. Environ. Microbiol. 54: 2586-2589.
  7. Kang, D. G., L. Li, J. H. Ha, S. S. Choi, and J. H. Cha. 2008. Efficient cell surface display of organophosphorus hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Chem. Eng. 25: 804-807.
  8. Kern, R. 2007. Enzyme-based detoxification of organophosphorus neurotoxic pesticides and chemical warfare agents. PhD Thesis. Texas A&M University.
  9. Kim, S. C. and N. T. Lee. 2001. Detoxification of sarin, an acetylcholinesterase inhibitor, by recombinant organophosphorus acid anhydrolase. Biochem. Molec. 34: 440-445.
  10. Li, C., Y. Zhu, I. Benz, M. A. Schmidt, W. Chen, A. Mulchandani, and C. Qiao. 2008. Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. Biotechnol. Bioeng. 99: 85-490
  11. Li, L., D. G. Kang, and J. H. Cha. 2004. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214-221 https://doi.org/10.1002/bit.10892
  12. Mulchandani, A., W. Chen, A. Wang, C. Cho, and M. Shimazu. 2002. Novel biological methods for degradation of organophosphate pesticides. Symposia Paper Presented Before the Division of Environmental Chemistry American Chemical Society, August 18-22, 2002, Boston, MA. 42: 398-400.
  13. Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen. 1977. Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987.
  14. Shi, H. and W. Wen. 2001. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme. Microb. Technol. 28: 25-34. https://doi.org/10.1016/S0141-0229(00)00281-7
  15. Shimazu, M., A. Mulchandani, and. W. Chen. 2001. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Prog. 17: 76-80. https://doi.org/10.1021/bp0001563
  16. Xu, Y., Q. Liu, L. Zhou, Z. Yang, and Y. Zha. 2008. Surface display of GFP by Pseudomonas syringae truncated ice nucleation protein in attenuated Vibrio anguillarum strain. Mar. Biotechnol. 10: 701-708. https://doi.org/10.1007/s10126-008-9108-7
  17. Yang, C., Q. Zhao, Z. Liu, Q. Li, C. Qiao, A. Mulchandani, and W. Chen. 2008. Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. Environ. Sci. Technol. 42: 6105-6110. https://doi.org/10.1021/es800441t
  18. Yang, Z., Q. Lio, Q. Wang, and Y. Zhang. 2008. Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum. Appl. Environ. Microbiol. 74: 4359-4365. https://doi.org/10.1128/AEM.02499-07

Cited by

  1. Surface Display and Bioactivity of Bombyx mori Acetylcholinesterase on Pichia pastoris vol.8, pp.8, 2012, https://doi.org/10.1371/journal.pone.0070451
  2. Comparison of the Organophosphorus Hydrolase Surface Display Using InaVN and Lpp-OmpA Systems in Escherichia coli vol.24, pp.3, 2012, https://doi.org/10.4014/jmb.1309.09066
  3. A safety type genetically engineered bacterium with red fluorescence which can be used to degrade organophosphorus pesticides vol.11, pp.4, 2012, https://doi.org/10.1007/s13762-013-0269-1
  4. An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computational modeling vol.36, pp.10, 2014, https://doi.org/10.1007/s10529-014-1568-4
  5. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application vol.98, pp.19, 2014, https://doi.org/10.1007/s00253-014-5897-y
  6. Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp) vol.177, pp.3, 2012, https://doi.org/10.1007/s12010-015-1766-0
  7. Construction of a cell‐surface display system based on the N‐terminal domain of ice nucleation protein and its application in identification of mycoplasma adhesion proteins vol.119, pp.1, 2012, https://doi.org/10.1111/jam.12824
  8. The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli vol.8, pp.12, 2012, https://doi.org/10.5812/jjm.17790
  9. Versatile signal peptide of Flavobacterium‐originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli vol.32, pp.4, 2012, https://doi.org/10.1002/btpr.2274
  10. Enzymatic detoxification of organophosphorus pesticides and related toxicants vol.43, pp.1, 2012, https://doi.org/10.1584/jpestics.d17-078
  11. A safety type of genetically engineered bacterium that degrades chemical pesticides vol.10, pp.1, 2012, https://doi.org/10.1186/s13568-020-00967-y