References
- Caceres, T. 2010. Fenamiphos and related organophosphorus pesticides: Environmental fate and toxicology. Environ. Contam. Toxicol. 205: 117-162.
- Cochet, N. and P. Wildehem. 2000. Ice crystallization by Pseudomonas syringae. Appl. Microbiol. Biotechnol. 54: 153-161 https://doi.org/10.1007/s002530000377
- Diaz Casas, A. Z. 2004. Bioremediation of the organophosphate methyl parathion using genetically engineered and native organism. Master Thesis. Texas A & M University.
- Efremenko, E. N. and V. S. sergeeva. 2001. Organophosphate hydrolase - an enzyme catalyzing degradation of phosphoruscontaining toxins and pesticides. Russ. Chem. Bull. 50: 1826- 1832. https://doi.org/10.1023/A:1014377912147
- Ghanem, E. and F. M. Raushel. 2005. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol. Appl. Pharmacol. 207: 459-470. https://doi.org/10.1016/j.taap.2005.02.025
- Harper, L., S. McDaniel, C. Miller, and J. Wild. 1988. Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl. Environ. Microbiol. 54: 2586-2589.
- Kang, D. G., L. Li, J. H. Ha, S. S. Choi, and J. H. Cha. 2008. Efficient cell surface display of organophosphorus hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Chem. Eng. 25: 804-807.
- Kern, R. 2007. Enzyme-based detoxification of organophosphorus neurotoxic pesticides and chemical warfare agents. PhD Thesis. Texas A&M University.
- Kim, S. C. and N. T. Lee. 2001. Detoxification of sarin, an acetylcholinesterase inhibitor, by recombinant organophosphorus acid anhydrolase. Biochem. Molec. 34: 440-445.
- Li, C., Y. Zhu, I. Benz, M. A. Schmidt, W. Chen, A. Mulchandani, and C. Qiao. 2008. Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. Biotechnol. Bioeng. 99: 85-490
- Li, L., D. G. Kang, and J. H. Cha. 2004. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214-221 https://doi.org/10.1002/bit.10892
- Mulchandani, A., W. Chen, A. Wang, C. Cho, and M. Shimazu. 2002. Novel biological methods for degradation of organophosphate pesticides. Symposia Paper Presented Before the Division of Environmental Chemistry American Chemical Society, August 18-22, 2002, Boston, MA. 42: 398-400.
- Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen. 1977. Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987.
- Shi, H. and W. Wen. 2001. Display of green fluorescent protein on Escherichia coli cell surface. Enzyme. Microb. Technol. 28: 25-34. https://doi.org/10.1016/S0141-0229(00)00281-7
- Shimazu, M., A. Mulchandani, and. W. Chen. 2001. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Prog. 17: 76-80. https://doi.org/10.1021/bp0001563
- Xu, Y., Q. Liu, L. Zhou, Z. Yang, and Y. Zha. 2008. Surface display of GFP by Pseudomonas syringae truncated ice nucleation protein in attenuated Vibrio anguillarum strain. Mar. Biotechnol. 10: 701-708. https://doi.org/10.1007/s10126-008-9108-7
- Yang, C., Q. Zhao, Z. Liu, Q. Li, C. Qiao, A. Mulchandani, and W. Chen. 2008. Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. Environ. Sci. Technol. 42: 6105-6110. https://doi.org/10.1021/es800441t
- Yang, Z., Q. Lio, Q. Wang, and Y. Zhang. 2008. Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum. Appl. Environ. Microbiol. 74: 4359-4365. https://doi.org/10.1128/AEM.02499-07
Cited by
- Surface Display and Bioactivity of Bombyx mori Acetylcholinesterase on Pichia pastoris vol.8, pp.8, 2012, https://doi.org/10.1371/journal.pone.0070451
- Comparison of the Organophosphorus Hydrolase Surface Display Using InaVN and Lpp-OmpA Systems in Escherichia coli vol.24, pp.3, 2012, https://doi.org/10.4014/jmb.1309.09066
- A safety type genetically engineered bacterium with red fluorescence which can be used to degrade organophosphorus pesticides vol.11, pp.4, 2012, https://doi.org/10.1007/s13762-013-0269-1
- An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computational modeling vol.36, pp.10, 2014, https://doi.org/10.1007/s10529-014-1568-4
- Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application vol.98, pp.19, 2014, https://doi.org/10.1007/s00253-014-5897-y
- Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp) vol.177, pp.3, 2012, https://doi.org/10.1007/s12010-015-1766-0
- Construction of a cell‐surface display system based on the N‐terminal domain of ice nucleation protein and its application in identification of mycoplasma adhesion proteins vol.119, pp.1, 2012, https://doi.org/10.1111/jam.12824
- The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli vol.8, pp.12, 2012, https://doi.org/10.5812/jjm.17790
- Versatile signal peptide of Flavobacterium‐originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli vol.32, pp.4, 2012, https://doi.org/10.1002/btpr.2274
- Enzymatic detoxification of organophosphorus pesticides and related toxicants vol.43, pp.1, 2012, https://doi.org/10.1584/jpestics.d17-078
- A safety type of genetically engineered bacterium that degrades chemical pesticides vol.10, pp.1, 2012, https://doi.org/10.1186/s13568-020-00967-y