DOI QR코드

DOI QR Code

eRF1aMC and $Mg^{2+}$ Dependent Structure Switch of GTP Binding to eRF3 in Euplotes octocarinatus

  • Song, Li (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University) ;
  • Jia, Yu-Xin (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University) ;
  • Zhu, Wen-Si (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University) ;
  • Chai, Bao-Feng (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University) ;
  • Liang, Ai-Hua (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University)
  • Received : 2011.08.08
  • Accepted : 2011.10.28
  • Published : 2012.02.28

Abstract

Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of $Mg^{2+}$. Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C eRF1a GTP and eRF3C eRF1aMC GTP complexes were further altered upon the addition of $Mg^{2+}$. By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and $Mg^{2+}$, whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.

Keywords

References

  1. Alkalaeva, E. Z., A. V. Pisarev, L. Y. Frolova, L. L. Kisselev, and T. V. Pestova. 2006. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125: 1125-1136. https://doi.org/10.1016/j.cell.2006.04.035
  2. Atkinson, G. C., S. L. Baldauf, and V. Hauryliuk. 2008. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol. Biol. 8: 290. https://doi.org/10.1186/1471-2148-8-290
  3. Becker, T., J. P. Armache, A. Jarasch, A. M Anger, E. Villa, H. Sieber, et al. 2011. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol. 18: 715-720. https://doi.org/10.1038/nsmb.2057
  4. Chen, L., D. Muhlrad, V. Hauryliuk, Z. Cheng, M. K. Lim, V. Shyp, et al. 2010. Structure of the Dom34-Hbs1 complex and implications for no-go decay. Nat. Struct. Mol. Biol. 17: 1233-1240. https://doi.org/10.1038/nsmb.1922
  5. Cheng, Z. H., K. Saito, A. V. Pisarev, M. Wada, V. P. Pisareva, T. V. Pestova, et al. 2009. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev. 23: 1106-1108. https://doi.org/10.1101/gad.1770109
  6. Ebihara, K. and Y. Nakamura. 1999. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: Gdomain uncoupled binding and the role of conserved amino acids. RNA 5: 739-750. https://doi.org/10.1017/S135583829998216X
  7. Frolova, L., L. X. Goff, G. Zhouravleva, E. Davydova, M. Philippe, and L. Kisselev. 1996. Eukaryotic polypeptide chain release factor eRF3 is an eRF1-and ribosome-dependent guanosine triphosphatase. RNA 2: 334-341.
  8. Fan-Minogue, H., M. Du, A. V. Pisarev, A. K. Kallmeyer, J. Salas-Marco, K. M. Keeling, et al. 2008. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol. Cell 30: 599-609. https://doi.org/10.1016/j.molcel.2008.03.020
  9. Frolova, L. Y., J. L. Simonsen, T. I. Merkulova, D. Y. Litvinoc, P. M. Martensen, V. O. Rechinsky, et al. 1998. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur. J. Biochem. 23: 636-644.
  10. Hauryliuk, V., A. Zavialov, L. Kisselev, and M. Ehrenberg. 2006. Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3. Biochimie 88: 747-757. https://doi.org/10.1016/j.biochi.2006.06.001
  11. Hauryliuk, V., H. Sebastian, and M. Ehrenberg. 2008. Cofactor dependent conformational switching of GTPases. Biophys. J. 95: 1704-1715. https://doi.org/10.1529/biophysj.107.127290
  12. Inge-Vechtomov, S. G., G. Zhouravleva, and M. Philippe. 2003. Eukaryotic release factors (eRFs) history. Biol. Cell 95: 195-209. https://doi.org/10.1016/S0248-4900(03)00035-2
  13. Ito, K., K. Ebihara, and Y. Nakamura. 1998. The stretch of Cterminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4: 958-972. https://doi.org/10.1017/S1355838298971874
  14. Karamyshev, A. L., K. Ito, and Y. Nakamura. 1999. Polypeptide release factor eRF1 from Tetrahymena thermophila: cDNA cloning, purification and complex formation with yeast eRF3. FEBS Lett. 457: 483-488. https://doi.org/10.1016/S0014-5793(99)01089-3
  15. Kisselev, L., M. Ehrenberg, and L. Frolova. 2003. Termination of translation: Interplay of mRNA, rRNAs and release factors? EMBO J. 22: 175-182. https://doi.org/10.1093/emboj/cdg017
  16. Kervestin, S., L. Frolova, L. Kisselev, and O. Jean-Jean. 2001. Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon. EMBO Rep. 2: 680-684. https://doi.org/10.1093/embo-reports/kve156
  17. Kong, C., K. Ito, M. A. Walsh, M. Wada, Y. Liu, S. Kumar, et al. 2004. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol. Cell 14: 233-245. https://doi.org/10.1016/S1097-2765(04)00206-0
  18. Kononenko, A. V., V. A. Mitkevich, V. I. Dubovaya, P. M. Kolosov, A. A. Makarov, and L. L. Kisselev. 2008. Role of the individual domains of translation termination factor eRF1 in GTP binding to eRF3. Proteins 70: 388-393.
  19. Kononenko, A. V., V. A. Mitkevich, G. C. Atkinson, T. Tenson, V. I. Dubovaya, L. Y. Frolova, et al. 2010. GTP-dependent structural rearrangement of the eRF1:eRF3 complex and eRF3 sequence motifs essential for PABP binding. Nucleic Acids Res. 38: 548-558. https://doi.org/10.1093/nar/gkp908
  20. Liang, A. H., C. Brunen-Nieweler, T. Muramatsu, Y. Kuchino, H. Beier, and K. Heckmann. 2001. The ciliate Euplotes octocarinatus expresses two polypeptide release factors of the type eRF1. Gene 262: 161-168. https://doi.org/10.1016/S0378-1119(00)00538-2
  21. Lozupone, C. A., R. D. Knight, and L. F. Landweber. 2001. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. 23: 65-74.
  22. Merkulova, T. I., L. Y. Frolova, M. Lazar, J. Camonis, and L. L. Kisselev. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443: 41-47. https://doi.org/10.1016/S0014-5793(98)01669-X
  23. Meyer, F., H. J. Schmidt, E. Plumper, A. Hasilik, G. Mersmann, H. E. Meyer, et al. 1991. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc. Natl. Acad. Sci. USA 88: 3758-3761. https://doi.org/10.1073/pnas.88.9.3758
  24. Mitkevich, V. A., A. V. Kononenko, I. Y. Petrushanko, D. V. Yanvarev, A. A. Makarov, and L. Kisselev. 2006. Termination of translation in eukaryotes is mediated by the quaternary eRF1.eRF3.GTP.$Mg^{2+}$ complex. The biological roles of eRF3 and prokaryotic RF3 are profoundly distinct. Nucleic Acids Res. 34: 3947-3954. https://doi.org/10.1093/nar/gkl549
  25. Pace, C. N., F. Vajdos, L. Fee, G. Grimsley, and T. Gray. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4: 2411-2423. https://doi.org/10.1002/pro.5560041120
  26. Pisareva, V. P., A. V. Pisarev, C. U. T. Hellen, M. V. Rodnina, and T. V. Pestova. 2006. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. J. Biol. Chem. 281: 40224-40235. https://doi.org/10.1074/jbc.M607461200
  27. Salas-Marco, J. and D. M. Bedwell. 2004. GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol. Cell Biol. 24: 7769-7778. https://doi.org/10.1128/MCB.24.17.7769-7778.2004
  28. Shoemaker, C. J., D. E. Eyler, and R. Green. 2010. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330: 369-372. https://doi.org/10.1126/science.1192430
  29. Song, L., B. F. Chai, W. Wang, and A. H. Liang. 2006. Identification of translational release factor eRF1a binding sites on eRF3 in Euplotes octocarinatus. Res. Microbiol. 157: 842-850. https://doi.org/10.1016/j.resmic.2006.07.005
  30. Song, H., P. Mugnier, A. K. Das, H. M. Webb, D. R. Evans, M. F. Tuite, et al. 2000. The crystal structure of human eukaryotic release factor eRF1 - mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311-321. https://doi.org/10.1016/S0092-8674(00)80667-4
  31. Song, L., J. L. Dong, Y. Q. Zhao, B. F. Chai, and A. H. Liang. 2010. GTPase activity analysis of eRF3 in Euplotes octocarinatus. J. Microbiol. Biotechnol. 20: 1283-1287. https://doi.org/10.4014/jmb.1004.04020
  32. Song, L., Y. Y. Wang, B. F. Chai, W. Wang, and A. H. Liang. 2007. C-terminal 76 amino acids of eRF3 are not required for the binding of release factor eRF1a from Euplotes octocarinatus. J. Genet. Genomics 34: 1-5. https://doi.org/10.1016/S1673-8527(07)60001-0
  33. Sun, Q. H., B. F. Chai, and A. H. Liang. 2002. Cloning and sequence of eRF3 gene from Euplotes octocarinatus. Chinese J. Biochem. Mol. Biol. 18: 347-351.
  34. Van den Elzen, A. M., J. Henri, N. Lazar, M. E. Gas, D. Durand, F. Lacroute, et al. 2010. Dissection of Dom34-Hbs1 reveals independent functions in two RNA quality control pathways. Nat. Struct. Mol. Biol. 17: 1446-1452. https://doi.org/10.1038/nsmb.1963

Cited by

  1. The acidic ribosomal protein P2 from Euplotes octocarinatus is phosphorylated at its N-terminal domain vol.92, pp.1, 2012, https://doi.org/10.1139/bcb-2013-0063